Article contents
Wake transition in the flow around a circular cylinder with a splitter plate
Published online by Cambridge University Press: 22 August 2014
Abstract
A simple way to decrease the drag and oscillating lift forces in the flow around a circular cylinder consists of positioning a splitter plate in the wake, parallel to the flow. In this paper, the effect of the splitter plate on the wake dynamics, more specifically on the wake transition, is described in detail. First, two-dimensional and three-dimensional direct numerical simulations (DNS) using the spectral element method were used to observe the behaviour of the wake in the presence of the splitter plate. Then, a linear stability analysis based on the Floquet theory was performed in order to obtain information on how the splitter plate changes the instabilities that lead to wake transition. Simulations were carried out for several gaps between the splitter plate and the cylinder, with the Reynolds number varying in the range between 100 and 350, which corresponds to the wake transition in the flow around a circular cylinder. The results of the simulations showed a discontinuity in the Strouhal number curve that is consistent with the results available in the literature. The stability analysis showed how the splitter plate modifies the transition of the flow to a three-dimensional configuration. The splitter plate has a stabilizing effect on the flow for small gaps, delaying the appearance of three-dimensional structures to higher Reynolds numbers. Mode A and a quasi-periodic (QP) mode are observed for such small gaps. As the gap is increased the discontinuity in the Strouhal number curve also caused a clear change in the characteristics of the neutral stability curve, and the existence of an unstable period-doubling mode was observed. The onset characteristics of the unstable modes are analysed and discussed in depth.
JFM classification
- Type
- Papers
- Information
- Copyright
- © 2014 Cambridge University Press
References
- 48
- Cited by