Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T21:54:51.359Z Has data issue: false hasContentIssue false

Vorticity reconnection during vortex cutting by a blade

Published online by Cambridge University Press:  01 October 2015

D. Curtis Saunders
Affiliation:
School of Engineering, The University of Vermont, Burlington, VT 05405, USA
Jeffrey S. Marshall*
Affiliation:
School of Engineering, The University of Vermont, Burlington, VT 05405, USA
*
Email address for correspondence: [email protected]

Abstract

A computational study of vorticity reconnection, associated with the breaking and reconnection of vortex lines, during vortex cutting by a blade is reported. A series of Navier–Stokes simulations of vortex cutting with different values of the vortex strength are described, and the different phases in the vortex cutting process are compared to those of the more traditional vortex tube reconnection process. Each of the three phases of vortex tube reconnection described by Melander & Hussain (Phys. Fluids A, vol. 1(4), 1989, pp. 633–635) are found to have counterparts in the vortex cutting problem, although we also point out numerous differences in the detailed mechanics by which these phases are achieved. Of particular importance in the vortex cutting process is the presence of vorticity generation from the blade surface within the reconnection region and the presence of strong vortex stretching due to the ambient flow about the blade leading edge. A simple exact Navier–Stokes solution is presented that describes the process by which incident vorticity is stretched and carried towards the surface by the ambient flow, and then interacts with and is eventually annihilated by diffusive interaction with vorticity generated at the surface. The model combines a Hiemenz straining flow, a Burgers vortex sheet and a Stokes first problem boundary layer, resulting in a nonlinear ordinary differential equation and a partial differential equation in two scaled time and distance variables that must be solved numerically. The simple model predictions exhibit qualitative agreement with the full numerical simulation results for vorticity annihilation near the leading-edge stagnation point during vortex cutting.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, A. R. 1986 An experimental investigation of blade–vortex interaction at normal incidence. AIAA J. Aircraft 23 (1), 4755.Google Scholar
Binder, A. 1985 Turbulence production due to secondary vortex cutting in a turbine rotor. Trans. ASME J. Engng Gas Turbines Power 107, 10391046.Google Scholar
Boratav, O. N., Pelz, R. B. & Zabusky, N. J. 1992 Reconnection in orthogonally interacting vortex tubes: direct numerical simulations and quantifications. Phys. Fluids A 4 (3), 581605.Google Scholar
Burgers, J. M. 1948 A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171199.CrossRefGoogle Scholar
Cary, C. M.1987 An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. NASA Tech. Rep. CR-177457.Google Scholar
Coton, F. N., Marshall, J. S., McD. Galbraith, R. A. & Green, R. B. 2004 Helicopter tail rotor orthogonal blade–vortex interaction. Prog. Aerosp. Sci. 40 (7), 453486.CrossRefGoogle Scholar
Doolan, C., Coton, F. & Galbraith, R. 1999 Three-dimensional vortex interactions with a stationary blade. Aeronaut. J. 103 (1030), 578587.Google Scholar
Doolan, C. J., Coton, F. N. & Galbraith, R. A. 2001 Surface pressure measurements of the orthogonal vortex interaction. AIAA J. 38 (1), 8895.Google Scholar
Early, J., Green, R. & Coton, F. 2002 Flow visualization of the orthogonal blade–vortex interaction using particle image velocimetry. Aeronaut. J. 106 (1057), 137145.CrossRefGoogle Scholar
Felli, M. & Falchi, M. 2011 Propeller tip and hub vortex dynamics in the interaction with a rudder. Exp. Fluids 51, 13851402.CrossRefGoogle Scholar
Felli, M., Roberto, C. & Guj, G. 2009 Experimental analysis of the flow field around a propeller–rudder configuration. Exp. Fluids 46, 147164.Google Scholar
Filippone, A. & Afgan, I. 2008 Orthogonal blade–vortex interaction on a helicopter tail rotor. AIAA J. 46 (6), 14761489.CrossRefGoogle Scholar
Gibbon, J. D., Fokas, A. S. & Doering, C. R. 1999 Dynamically stretched vortices as solutions of the 3D Navier–Stokes equations. Physica D 132, 497510.Google Scholar
Green, R. B., Coton, F. N. & Early, J. M. 2006 On the three-dimensional nature of the orthogonal blade–vortex interaction. Exp. Fluids 41, 749761.Google Scholar
Green, R., Doolan, C. & Cannon, R. 2000 Measurements of the orthogonal blade–vortex interaction using a particle image velocimetry technique. Exp. Fluids 29, 369379.Google Scholar
Hiemenz, K. 1911 Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dingler’s Polytech. J. 326, 321324.Google Scholar
Issa, R. 1985 Solution of the implicit discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 4065.Google Scholar
Johnston, R. T. & Sullivan, J. P.1992 Unsteady wing surface pressures in the wake of a propeller. AIAA Paper 92-0277.Google Scholar
Kida, S. & Takaoka, M. 1994 Vortex reconnection. Annu. Rev. Fluid Mech. 26, 169189.Google Scholar
Kida, S., Takaoka, M. & Hussain, F. 1991 Formation of head–tail structure in a two-dimensional uniform straining flow. Phys. Fluids A 3 (11), 26882697.Google Scholar
Krishnamoorthy, S. & Marshall, J. S. 1994 An experimental investigation of ‘vortex shocks’. Phys. Fluids 6 (11), 37373741.Google Scholar
Krishnamoorthy, S. & Marshall, J. S. 1998 Three-dimensional blade–vortex interaction in the strong-vortex regime. Phys. Fluids 10 (11), 28282845.Google Scholar
Lai, Y. G. 2000 Unstructured grid arbitrarily shaped element method for fluid flow simulation. AIAA J. 38 (12), 22462252.Google Scholar
Lee, J., Burggraf, O. & Conlisk, A. 1998 On the impulsive blocking of a vortex jet. J. Fluid Mech. 369, 301331.Google Scholar
Leishman, J. G. 2006 Principles of Helicopter Aerodynamics. p. 351. Cambridge University Press.Google Scholar
Leverton, J. W., Pollard, J. S. & Wills, C. R. 1977 Main rotor wake/tail rotor interaction. Vertica 1, 213221.Google Scholar
Liu, X. & Marshall, J. S. 2004 Blade penetration into a vortex core with and without axial core flow. J. Fluid Mech. 519, 81103.Google Scholar
Marshall, J. S. 1994 Vortex cutting by a blade. Part I. General theory and a simple solution. AIAA J. 32 (6), 11451150.CrossRefGoogle Scholar
Marshall, J. S. 2001 Inviscid Incompressible Flow. John Wiley & Sons.Google Scholar
Marshall, J. S. & Grant, J. R. 1996 Penetration of a blade into a vortex core: vorticity response and unsteady blade forces. J. Fluid Mech. 306, 83109.Google Scholar
Marshall, J. S. & Krishnamoorthy, S. 1997 On the instantaneous cutting of a columnar vortex with non-zero axial flow. J. Fluid Mech. 351, 4174.Google Scholar
Marshall, J. S. & Yalamanchili, R. 1994 Vortex cutting by a blade. Part II. Computations of vortex response. AIAA J. 32 (7), 14281436.Google Scholar
Melander, M. V. & Hussain, F. 1989 Cross-linking of two antiparallel vortex tubes. Phys. Fluids A 1 (4), 633635.CrossRefGoogle Scholar
Nagahara, T., Sato, T. & Okamura, T. 2001 Effect of the submerged vortex cavitation occurred in pump suction intake on hydraulic forces of mixed flow pump impeller. In CAV 2001: 4th International Symposium on Cavitation, Pasadena, CA.Google Scholar
Paterson, R. W. & Amiet, R. K.1979 Noise of a model helicopter rotor due to ingestion of turbulence. NASA Tech. Rep. CR-2313.Google Scholar
Saffman, P. G. 1990 A model of vortex reconnection. J. Fluid Mech. 212, 395402.Google Scholar
Shelley, M. J., Meiron, D. I. & Orszag, S. A. 1993 Dynamical aspects of vortex reconnection of perturbed anti-parallel vortex tubes. J. Fluid Mech. 246, 613652.CrossRefGoogle Scholar
Sheridan, P. F. & Smith, R. P. 1980 Interactional aerodynamics – a new challenge to helicopter technology. J. Am. Helicopter Soc. 25 (1), 321.CrossRefGoogle Scholar
Siggia, E. D. 1985 Collapse and amplification of a vortex filament. Phys. Fluids 28, 794805.Google Scholar
Wang, T., Doolan, C. J., Coton, F. N. & Galbraith, R. A. M. 2002 Experimental study of the three-dimensionality of orthogonal blade–vortex interaction. AIAA J. 40 (10), 20372046.Google Scholar
Zabusky, N. J. & Melander, M. V. 1989 Three-dimensional vortex tube reconnection: morphology for orthogonally-offset tubes. Physica D 37, 555562.Google Scholar