Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T07:29:05.187Z Has data issue: false hasContentIssue false

Vorticity organization in the outer layer of turbulent channels with disturbed walls

Published online by Cambridge University Press:  30 October 2007

OSCAR FLORES
Affiliation:
School of Aeronautics, Universidad Politécnica de Madrid, 28040 Madrid, Spain
JAVIER JIMÉNEZ
Affiliation:
School of Aeronautics, Universidad Politécnica de Madrid, 28040 Madrid, Spain Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA
JUAN C. DEL ÁLAMO
Affiliation:
MAE Department, University of California San Diego, La Jolla, CA 92093, USA

Abstract

The vortex clusters in the turbulent outer region of rough- and smooth-walled channels, and their associated velocity structures, are compared using data from numerical experiments at friction Reynolds numbers Reτ ≤ 674. The results indicate that the roughness of the wall does not affect their properties, particularly the existence of wall-detached and wall-attached populations, and the self-similar size distribution of the latter. The average flow field conditioned to the attached clusters reveals similar conical structures of low streamwise velocity for the rough- and smooth-walled cases, which eventually grow into the global modes previously identified from spectral analysis. We conclude that the vortex clusters of the turbulent outer region either originate away from the wall, or quickly forget their origin, in agreement with Townsend's similarity hypothesis.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 153.CrossRefGoogle Scholar
delÁlamo, J. C. Álamo, J. C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15, L41L44.Google Scholar
delÁlamo, J. C. Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.Google Scholar
delÁlamo, J. C. Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2006 Self-similar vortex clusters in the logarithmic region. J. Fluid Mech. 561, 329358.Google Scholar
Ashafarian, A., Andersson, H. I. & Manhart, M. 2004 DNS of turbulent flow in a rod-roughened channel. Intl J. Fluid Flow 25, 373383.Google Scholar
Bakken, O. M., Krogstad, P. A., Ashfarian, A. & Andersson, H. I. 2005 Reynolds number effects in the outer layer of the turbulent flow in a channel with rough walls. Phys. Fluids 17, 065101.CrossRefGoogle Scholar
Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 310, 269292.CrossRefGoogle Scholar
Bullock, K. J., Cooper, R. E. & Abernathy, F. H. 1978 Structural similarity in radial correlations and spectra of longitudinal velocity fluctuations in pipe flow. J. Fluid Mech. 88, 585608.CrossRefGoogle Scholar
Chong, M. S., Soria, J., Perry, A. E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 Turbulence structures of wall-bounded flows using DNS data. J. Fluid Mech. 357, 225247.CrossRefGoogle Scholar
Flack, K. A., Schultz, M. P. & Shapiro, T. A. 2005 Experimental support for Townsend's Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17, 035102.CrossRefGoogle Scholar
Flores, O. 2007 The dynamics of the outer region of wall-bounded turbulence. PhD thesis, Universidad Politécnica de Madrid, in preparation.Google Scholar
Flores, O. & Jiménez, J. 2006 Effect of wall-boundary disturbances on turbulent channel flows. J. Fluid Mech. 566, 357376.CrossRefGoogle Scholar
Flores, O. & Jiménez, J. 2007 Linear dynamics of self-similar structures in the turbulent logarithmic region. J. Fluid Mech. (submitted).Google Scholar
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
Jiménez, J., delÁlamo, J. C. Álamo, J. C. & Flores, O. 2004 The large-scale dynamics of near-wall turbulence. J. Fluid Mech. 505, 179199.CrossRefGoogle Scholar
Keirsbulck, L., Labraga, L., Mazouz, A. & Tournier, C. 2002 Surface roughness effects on turbulent boundary layer structures. Trans. ASME: J. Fluids Engng 124, 127135.Google Scholar
Kim, K. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.CrossRefGoogle Scholar
Metzger, M., McKeon, B. J. & Holmes, H. 2007 The near-neutral atmospheric surface layer: turbulence and non-stationarity. Phil. Trans. R. Soc. Lond. A 365, 859876.Google ScholarPubMed
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.CrossRefGoogle Scholar
Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 119, 163199.CrossRefGoogle Scholar
Perry, A. E. & Marusic, I. 1995 A wall-wake model for the turbulence structure of boundary layers. 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361388.CrossRefGoogle Scholar
Robinson, S. K. 1991 a Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Robinson, S. K. 1991 b The kinematics of turbulent boundary layer structure. PhD thesis, NASA Ames Research Center.Google Scholar
Tanahashi, M., Kang, S.-J., Miyamoto, T., Shiokawa, S. & Miyauchi, T. 2004 Scaling of fine scale eddies in turbulent channel flows up to R e τ = 800. Intl J. Heat Fluid Flow 25, 331340.CrossRefGoogle Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flows, 2nd edn. Cambridge University Press.Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar