Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T22:26:24.061Z Has data issue: false hasContentIssue false

Vortex shedding behind a square cylinder in transonic flows

Published online by Cambridge University Press:  21 April 2006

Takeo Nakagawa
Affiliation:
Max-Planck-Institut für Strömungsforschung, D-3400 Göttingen, Böttingerstrasse 4–8, Federal Republic of Germany

Abstract

This paper is primarily concerned with Mach-number effects on the vortex shedding behind a square cylinder (side length D = 20 mm) in a Reynolds-number range of 0.696 × 105 < Re < 4.137 × 105, and a Mach-number range of 0.1522 < M < 0.9049.

Regular periodic vortex shedding is present, irrespective of the appearance of shock waves around a square cylinder. The shape of the vortices is, however, deformed by the shock waves, and each vortex centre becomes non-uniform while the vortex passes through the gap between the upper and lower shock waves. Weak shock waves around the square cylinder do not alter the Strouhal number, but strong shock waves weaken the vortex shedding and increase the Strouhal number suddenly. Acoustic waves have been recorded by the Mach-Zehnder interferometer when the Mach number is close to the critical value. The acoustic waves are generated most strongly at the instant when each vortex hits the foot of the shock waves formed above and below the vortex formation region.

From the present work and that of Okajima (1982), it is suggested that the Strouhal number of alternating vortices shed from a square cylinder can be estimated to be about 0.13 in the Reynolds-number range between 102 and 3.4 × 105.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bearman, P. W. & Trueman, D. M. 1972 An investigation of the flow around rectangular cylinders. Aero. Q. 23, 229237.Google Scholar
BÉnard, H. 1908 Formation de centres de giration à l'arrière d'un obstacle en mouvement. C.R. Acad. Sci. Paris 147, 839842.Google Scholar
Dyment, A. 1982 Vortices following two-dimensional separation. In Vortex Motion (ed. H. G. Hornung & E. A. Müller), pp. 1830. Vieweg.
Ericsson, L. & Reding, J. P. 1979 Criterion for vortex periodicity in cylinder wakes. AIAA J. 17, 10121013.Google Scholar
Gerrard, J. H. 1966 The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech. 25, 401413.Google Scholar
KÁrmÁn, Th. Von 1911 Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse. 509–517.Google Scholar
KÁrmÁn, Th. Von 1912 Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse. 547–556.Google Scholar
Lee, B. E. 1975 The effect of turbulence on the surface pressure field of a square prism. J. Fluid Mech. 69, 263282.Google Scholar
Liepmann, H. W. & Roshko, A. 1957 Elements of Gas Dynamics, pp. 164190. John Wiley.
Mallock, A. 1907 On the resistance of air. Proc. R. Soc. Lond. A 79, 262273.Google Scholar
Nakagawa, T. 1986 A formation mechanism of alternating vortices behind a circular cylinder at high Reynolds number. J. Wind Engng Indust. Aero. 25, 113129.Google Scholar
Nakamura, Y. & Ohya, Y. 1986 Vortex shedding from square prisms in smooth and turbulent flows. J. Fluid Mech. 164, 7789.Google Scholar
Nash, J. F., Quincey, V. G. & Callinan, J. 1963 Experiments on two-dimensional base flow at subsonic and transonic speeds. A.R.C. Reports and Memoranda no. 3427.Google Scholar
Naumann, A. & Pfeiffer, H. 1958 Versuche an Wirbelstraßen hinter Zylindern bei hohen Geschwindigkeiten. Forschungsberichte des Wirtschafts-und Verkehrsministeriums Nordrhein-Westfalen, no. 493.
Okajima, A. 1982 Strouhal numbers of rectangular cylinders. J. Fluid Mech. 123, 379398.Google Scholar
Rayleigh, L. 1915 Aeolian tones. Phil. Mag. S6, 29, 433444.Google Scholar
Roshko, A. 1961 Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10, 345356.Google Scholar
Thomann, H. 1959 Measurements of the recovery temperature in wake of a cylinder and of a wedge at Mach numbers between 0.5 and 3. The Aeronautical Research Institute of Sweden, Report 84.