Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T15:42:21.716Z Has data issue: false hasContentIssue false

A vortex interaction mechanism for generating energy and enstrophy fluctuations in high-symmetric turbulence

Published online by Cambridge University Press:  12 July 2019

Tatsuya Yasuda*
Affiliation:
Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan Department of Aeronautics, Imperial College London, London SW7 2AZ, UK Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
Genta Kawahara
Affiliation:
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
Lennaert van Veen
Affiliation:
Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
Shigeo Kida
Affiliation:
Energy Conversion Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0394, Japan
*
Email address for correspondence: [email protected]

Abstract

Turbulent vortex dynamics is investigated in triply periodic turbulent flow with Kida’s high symmetry (Kida, J. Phys. Soc. Japan, vol. 54, 1985, pp. 2132–2136) by means of unstable periodic motion representing both the statistical and dynamical properties of turbulence (van Veen et al., Fluid Dyn. Res., vol. 38, 2006, pp. 19–46). In the periodic motion, the large-scale columnar vortices, the smaller-scale vortices and the large-amplitude axial waves on the large-scale columnar vortices are detected. In terms of mutual dynamical interaction between the large-scale columnar vortices and smaller-scale vortices, we demonstrate a cyclic process of excitation of the axial waves, which leads to large-amplitude fluctuations of the total kinetic energy and enstrophy. This cyclic process is characterised by three distinct phases and is therefore reminiscent of the regeneration cycle of near-wall turbulence structures (Hamilton et al., J. Fluid Mech., vol. 287, 1995, pp. 317–348). Notably, such oscillatory behaviour is observed even in freely decaying turbulence as a consequence of the instantaneous energy transfer from smaller to larger scales.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antkowiak, A. & Brancher, P. 2007 On vortex rings around vortices: an optimal mechanism. J. Fluid Mech. 578, 295304.Google Scholar
Baj, P. & Buxton, O. R. H. 2017 Interscale energy transfer in the merger of wakes of a multiscale array of rectangular cylinders. Phys. Rev. Fluids 2, 114607.Google Scholar
Boratav, O. N. & Pelz, R. B. 1994 Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. Phys. Fluids 6, 2757.Google Scholar
Boratav, O. N. & Pelz, R. B. 1995 On the local topology evolution of a high-symmetry flow. Phys. Fluids 7, 1712.Google Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.Google Scholar
Cafiero, G., Discetti, S. & Astarita, T. 2015 Flow field topology of submerged jets with fractal generated turbulence. Phys. Fluids 27, 115103.Google Scholar
Cardesa, J. I., Vela-Martín, A. & Jiménez, J. 2017 The turbulent cascade in five dimensions. Science 357, 782784.Google Scholar
Comte, P., Silvestrini, J. H. & Bégou, P. 1998 Streamwise vortices in Large-Eddy simulations of mixing layers. Eur. J. Mech. (B/Fluids) 17, 615637.Google Scholar
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.Google Scholar
Dairay, T., Obligado, M. & Vassilicos, J. C. 2015 Non-equilibrium scaling laws in axisymmetric turbulent wakes. J. Fluid Mech. 781, 166195.Google Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech. 551, 235274.Google Scholar
Goto, S. 2008 A physical mechanism of the energy cascade in homogeneous isotropic turbulence. J. Fluid Mech. 605, 355366.Google Scholar
Goto, S. 2012 Coherent structures and energy cascade in homogeneous turbulence. Prog. Theor. Phys. Suppl. 195, 139156.Google Scholar
Goto, S., Saito, Y. & Kawahara, G. 2017 Hierarchy of antiparallel vortex tubes in spatially periodic turbulence at high Reynolds numbers. Phys. Rev. Fluids 2, 064603.Google Scholar
Goto, S. & Vassilicos, J. C. 2015 Energy dissipation and flux laws for unsteady turbulence. Phys. Lett. A 379, 11441148.Google Scholar
Goto, S. & Vassilicos, J. C. 2016 Local equilibrium hypothesis and Taylor’s dissipation law. Fluid Dyn. Res. 48, 021402.Google Scholar
Hall, P. & Smith, F. T. 1991 On strongly nonlinear vortex/wave interactions in boundary-layer transition. J. Fluid Mech. 227, 641666.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.Google Scholar
Horiuti, K. & Ozawa, T. 2011 Multimode stretched spiral vortex and nonequilibrium energy spectrum in homogeneous shear flow turbulence. Phys. Fluids 23, 035107.Google Scholar
Hwang, Y., Willis, A. P. & Cossu, C. 2016 Invariant solutions of minimal large-scale structures in turbulent channel flow for Re 𝜏 up to 1000. J. Fluid Mech. 802, R1.Google Scholar
Jiménez, J. & Wray, A. A. 1994 Columnar vortices in isotropic turbulence. Meccanica 29, 453464.Google Scholar
Jiménez, J., Wray, A. A., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.Google Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.Google Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.Google Scholar
Kelvin, W. T. 1880 XXIV. Vibrations of a columnar vortex. Lond. Edinb. Dubl. Phil. Mag. J. Sci. 10, 155168.Google Scholar
Kerr, R. M. 1990 Velocity, scalar and transfer spectra in numerical turbulence. J. Fluid Mech. 211, 309332.Google Scholar
Kida, S. 1985 Three-dimensional periodic flows with high-symmetry. J. Phys. Soc. Japan 54, 21322136.Google Scholar
Kida, S. & Murakami, Y. 1987 Kolmogorov similarity in freely decaying turbulence. Phys. Fluids 30, 2030.Google Scholar
Kida, S., Murakami, Y., Ohkitani, K. & Yamada, M. 1990 Energy and flatness spectra in a forced turbulence. J. Phys. Soc. Japan 59, 43234330.Google Scholar
Kida, S. & Ohkitani, K. 1992 Spatiotemporal intermittency and instability of a forced turbulence. Phys. Fluids A 4, 1018.Google Scholar
Kida, S. & Takaoka, M. 1994 Vortex reconnection. Annu. Rev. Fluid Mech. 26, 169189.Google Scholar
Kimura, Y. 2010 Self-similar collapse of 2D and 3D vortex filament models. Theor. Comput. Fluid Dyn. 24, 389394.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Leibovich, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10, 221246.Google Scholar
Leibovich, S. & Kribus, A. 1990 Large-amplitude wavetrains and solitary waves in vortices. J. Fluid Mech. 216, 459504.Google Scholar
Leung, T., Swaminathan, N. & Davidson, P. A. 2012 Geometry and interaction of structures in homogeneous isotropic turbulence. J. Fluid Mech. 710, 453481.Google Scholar
Lucas, D. & Kerswell, R. 2014 Spatiotemporal dynamics in two-dimensional Kolmogorov flow over large domains. J. Fluid Mech. 750, 518554.Google Scholar
Lucas, D. & Kerswell, R. 2017 Sustaining processes from recurrent flows in body-forced turbulence. J. Fluid Mech. 817, R3.Google Scholar
Melander, M. V. & Hussain, F. 1994 Core dynamics on a vortex column. Fluid Dyn. Res. 13, 137.Google Scholar
Miyazaki, T. & Hunt, J. C. R. 2000 Linear and nonlinear interactions between a columnar vortex and external turbulence. J. Fluid Mech. 402, 349378.Google Scholar
Moore, D. W. & Saffman, P. G. 1972 The motion of a vortex filament with axial flow. Phil. Trans. R. Soc. A 272, 403429.Google Scholar
Pelz, R. B. 2001 Symmetry and the hydrodynamic blow-up problem. J. Fluid Mech. 444, 299320.Google Scholar
Pradeep, D. S. & Hussain, F. 2010 Vortex dynamics of turbulence-coherent structure interaction. Theor. Comput. Fluid. Dyn. 24, 265282.Google Scholar
Rawat, S., Cossu, C., Hwang, Y. & Rincon, F. 2015 On the self-sustained nature of large-scale motions in turbulent Couette flow. J. Fluid Mech. 782, 515540.Google Scholar
Richardson, L. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.Google Scholar
Sánchez, J., Net, M., García-Archilla, B. & Simó, C. 2004 Newton–Krylov continuation of periodic orbits for Navier–Stokes flows. J. Comput. Phys. 201, 1333.Google Scholar
Sasaki, E., Kawahara, G., Sekimoto, A. & Jiménez, J. 2016 Unstable periodic orbits in plane Couette flow with the Smagorinsky model. J. Phys. Conf. Ser. 708, 012003.Google Scholar
Schoppa, W., Hussain, F. & Metcalfe, R. W. 1995 A new mechanism of small-scale transition in a plane mixing layer: core dynamics of spanwise vortices. J. Fluid Mech. 298, 2380.Google Scholar
Sekimoto, A. & Jiménez, J. 2017 Vertically localised equilibrium solutions in large-eddy simulations of homogeneous shear flow. J. Fluid Mech. 827, 225249.Google Scholar
She, Z.-S., Jackson, E. & Orszag, S. A. 1990 Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344, 226228.Google Scholar
Shimizu, M. & Kida, S. 2009 A driving mechanism of a turbulent puff in pipe flow. Fluid Dyn. Res. 41, 045501.Google Scholar
Takahashi, N., Ishii, H. & Miyazaki, T. 2005 The influence of turbulence on a columnar vortex. Phys. Fluids 17, 035105.Google Scholar
Valente, P. C. & Vassilicos, J. C. 2012 Universal dissipation scaling for nonequilibrium turbulence. Phys. Rev. Lett. 108, 214503.Google Scholar
Vassilicos, J. C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95114.Google Scholar
van Veen, L. 2005 The quasi-periodic doubling cascade in the transition to weak turbulence. Physica D 210, 249261.Google Scholar
van Veen, L., Kawahara, G. & Yasuda, T. 2018 Transitions in large eddy simulation of box turbulence. Eur. Phys. J. Spec. Top. 227, 463480.Google Scholar
van Veen, L., Kida, S. & Kawahara, G. 2006 Periodic motion representing isotropic turbulence. Fluid Dyn. Res. 38, 1946.Google Scholar
Verzicco, R., Jiménez, J. & Orlandi, P. 1995 On steady columnar vortices under local compression. J. Fluid Mech. 299, 367388.Google Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883.Google Scholar
Yasuda, T., Goto, S. & Kawahara, G. 2014 Quasi-cyclic evolution of turbulence driven by a steady force in a periodic cube. Fluid Dyn. Res. 46, 061413.Google Scholar

Yasuda et al. supplementary movie

The time evolution of the period-5 motion in the fundamental box (0 ≦ x1, x2, x3 ≦ π/2 ). The grey, yellow, and blue-coloured isosurfaces represent low pressure, positive axial vorticity, and negative circumferential vorticity, respectively. The two-dimensional velocity vectors are also shown on the two-dimensional plane including the points O, A and (0, π/2, 0).

Download Yasuda et al. supplementary movie(Video)
Video 3.2 MB