Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T04:19:47.482Z Has data issue: false hasContentIssue false

Vortex formation in a free boundary layer according to stability theory

Published online by Cambridge University Press:  28 March 2006

A. Michalke
Affiliation:
Deutsche Versuchsanstalt für Luft- und Raumfahrt, Institut für Turbulenzforschung, Berlin

Abstract

An attempt is made to explain the formation of vortices in free boundary layers by means of stability theory using a hyperbolic-tangent velocity profile. The vorticity distribution of the disturbed flow, as obtained by the inviscid linearized stability theory, is discussed. The path lines of particles which are initially placed along straight lines parallel to the x-axis are calculated. Lines connecting the positions of these particles give an impression of the instant shape of the disturbed flow. With increasing time the boundary layer becomes thinner in certain regions and thicker in others. A special line—originally positioned at the critical layer—shows in the thicker region a tendency to roll up. Also extrema of the vorticity are located there. Finally, these results are compared with those which can be expected from the non-linear Helmholtz equation. Disagreement is found in the neighbourhood of the critical layer. Using the non-linear stability theory of Stuart up to the third-order terms, the vorticity distribution shows the tendency expected from the non-linear equation.

Type
Research Article
Copyright
© 1965 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathy, F. H. & Kronauer, R. E. 1962 J. Fluid Mech. 13, 1.
Amsden, A. A. & Harlow, F. H. 1964 Phys. Fluids, 7, 327.
Berger, E. 1964 Z. Flugwiss. 12, 41.
Betchov, R. & Szewczyk, A. 1963 Phys. Fluids, 6, 1391.
Birkhoft, G. & Fisher, J. 1959 Rend. Circ. Math. Palermo, Ser. 2, 8, 77.
Domm, U. 1956 Deutsche Versuchsanstalt f. Luftfahrt, Porz-Wahn, DVL-Rep. no. 26.
Esch, R. E. 1957 J. Fluid Mech. 3, 289.
Hama, F. R. and Burke, E. R. 1960 Inst. Fluid Dynam. Appl. Math., Univ. Maryland, Tech. Note BN-220.
Helmholtz, H. 1868 Monatsbericht, Königl. Akad. Wiss., Berlin, 21528.
Klebanoff, P. S. & Tidstrom, K. D. 1958 Nat. Bur. Stand. Rep. 5741.
Lessen, M. 1950 Nat. Adv. Comm. Aero., Wash., Tech. Rep. no. 979.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Lin, C. C. 1958 Boundary Layer Research (ed. H. Görtler), pp. 14457. Berlin: Springer-Verlag.
Michalke, A. 1963 AFOSR Tech. Note no. 2, Contract AF 61(052)-412. Also 1964 Ing. Arch. 33, 264.
Michalke, A. 1964 J. Fluid Mech. 19, 543.
Michalke, A. & Wille, R. 1964 Verhandl. XI. Internat. Kongr. Angew. Mech. Berlin: Springer-Verlag (to be published).
Rayleigh, Lord 1880 Sci. Papers, 1, 47487.
Rosenhead, L. 1931 Proc. Roy. Soc. A, 134, 170.
Sato, H. 1960 J. Fluid Mech. 7, 53.
Schade, H. 1964 Phys. Fluids, 7, 623.
Schade, H. & Michalke, A. 1962 Z. Flugwiss. 10, 147. Also AFOSR Tech. Note no. 3191.
Stuart, J. T. 1961 Adv. Aero. Sci. 3-4, 12142.
Tatsumi, T. & Kakutani, T. 1958 J. Fluid Mech. 4, 261.
Timme, A. 1957 Ing. Arch. 25, 205.
Watson, J. 1960 J. Fluid Mech. 9, 371.
Wille, R. 1963 Z. Flugwiss. 11, 222.