Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T21:44:32.877Z Has data issue: false hasContentIssue false

Vortex formation and shedding from a cyber-physical pitching plate

Published online by Cambridge University Press:  14 March 2016

Kyohei Onoue*
Affiliation:
School of Engineering, Brown University, Providence, RI 02912, USA
Kenneth S. Breuer
Affiliation:
School of Engineering, Brown University, Providence, RI 02912, USA
*
Email address for correspondence: [email protected]

Abstract

We report on the dynamics of the formation and growth of the leading-edge vortex and the corresponding unsteady aerodynamic torque induced by large-scale flow-induced oscillations of an elastically mounted flat plate. All experiments are performed using a high-bandwidth cyber-physical system, which enables the user to access a wide range of structural dynamics using a feedback control system. A series of two-dimensional particle image velocimetry measurements are carried out to characterize the behaviour of the separated flow structures and its relation to the plate kinematics and unsteady aerodynamic torque generation. By modulating the structural properties of the cyber-physical system, we systematically analyse the formation, strength and separation of the leading-edge vortex, and the dependence on kinematic parameters. We demonstrate that the leading-edge vortex growth and strength scale with the characteristic feeding shear-layer velocity and that a potential flow model using the measured vortex circulation and position can, when coupled with the steady moment of the flat plate, accurately predict the net aerodynamic torque on the plate. Connections to previous results on optimal vortex formation time are also discussed.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J., Christensen, K. T. & Liu, Z. C. 2000 Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275290.Google Scholar
Albrecht, T., del Campo, V., Weier, T. & Gerbeth, G.2012 Comparison of PIV-based methods for airfoil loads evaluation. In 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal.Google Scholar
Amandolese, X., Michelin, S. & Choquel, M. 2013 Low speed flutter and limit cycle oscillations of a two-degree-of-freedom flat plate in a wind tunnel. J. Fluids Struct. 43, 244255.Google Scholar
Baik, Y., Bernal, L., Granlund, K. & Ol, M. 2012 Unsteady force generation and vortex dynamics of pitching and plunging aerofoils. J. Fluid Mech. 709, 3768.CrossRefGoogle Scholar
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Buchholz, J. H. J., Green, M. A. & Smits, A. J. 2011 Scaling the circulation shed by a pitching panel. J. Fluid Mech. 688, 591601.Google Scholar
Clements, R. R. 1973 An inviscid model of two-dimensional vortex shedding. J. Fluid Mech. 57 (2), 321336.Google Scholar
Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.Google Scholar
Dabiri, J. O. & Gharib, M. R. 2005 Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech. 538, 111136.Google Scholar
DeVoria, A. C. & Ringuette, M. J. 2012 Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins. Exp. Fluids 52, 441462.Google Scholar
Ellington, C. P. 1984 The aerodynamics of insect light I–VI. Phil. Trans. R. Soc. Lond. B 305, 1181.Google Scholar
Ellington, C. P., vandenBerg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.CrossRefGoogle Scholar
Fage, A. & Johansen, F. C. 1927 On the flow of air behind an inclined flat plate of infinite span. Proc. R. Soc. Lond. A 116, 170197.Google Scholar
Gharib, M. R., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.Google Scholar
Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12, 14221429.CrossRefGoogle Scholar
Granlund, K. O., Ol, M. V. & Bernal, L. P. 2013 Unsteady pitching flat plates. J. Fluid Mech. 733, R5.113.Google Scholar
Gustafson, K. E. & Albert, J. 1991 Vortex Methods and Vortex Motion. Society for Industrial and Applied Mathematics.Google Scholar
Hartloper, C. & Rival, D. E. 2013 Vortex development on pitching plates with lunate and truncate planforms. J. Fluid Mech. 732, 332344.Google Scholar
Hemati, M. S., Eldredge, J. D. & Speyer, J. L. 2014 Improving vortex models via optimal control theory. J. Fluids Struct. 49, 91111.CrossRefGoogle Scholar
Hover, F., Miller, S. & Triantafyllou, M. S. 1997 Vortex-induced vibration of marine cables: experiments using force feedback. J. Fluids Struct. 11, 307326.Google Scholar
Jantzen, R. T., Taira, K., Granlund, K. O. & Ol, M. V. 2014 Vortex dynamics around pitching plates. Phys. Fluids 26, 053606.Google Scholar
Khalak, A. & Williamson, C. H. K. 1999 Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct. 13, 813851.Google Scholar
Kim, D. & Gharib, M. 2010 Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp. Fluids 49, 329339.CrossRefGoogle Scholar
Kriegseis, J., Kinzel, M. & Rival, D. E. 2013 On the persistence of memory: do initial conditions impact vortex formation? J. Fluid Mech. 736, 91106.Google Scholar
Lee, J. & Bernitsas, M. 2011 High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter. Ocean Engng 38, 16971712.Google Scholar
Leishman, J. G. 2000 Principles of Helicopter Aerodynamics. Cambridge University Press.Google Scholar
Lentink, D. & Dickinson, M. H. 2009 Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Expl Biol. 212, 27052719.Google Scholar
Mackowski, A. W. & Williamson, C. H. K. 2013 An experimental investigation of vortex-induced vibration with nonlinear restoring forces. Phys. Fluids 25, 087101.Google Scholar
McCroskey, W. J. 1982 Unsteady airfoils. Annu. Rev. Fluid Mech. 14, 285311.Google Scholar
Milano, M. & Gharib, M. 2005 Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403409.Google Scholar
Milne-Thomson, L. M. 1968 Theoretical Hydrodynamics, 5th edn. Dover; Reprint.Google Scholar
Minotti, F. O. 2002 Unsteady two-dimensional theory of a flapping wing. Phys. Rev. E 534, 051907.CrossRefGoogle Scholar
Ol, M. V., Altman, A., Eldredge, J., Garmann, D. & Lian, Y.2010 Résumé of the AIAA FDTC Low Reynolds Number Discussion Group’s canonical cases. AIAA Paper 2010-1085.Google Scholar
Onoue, K., Song, A., Strom, B. & Breuer, K. 2015 Large amplitude flow-induced oscillations and energy harvesting using a cyber-physical pitching plate. J. Fluids Struct. 55, 262275.Google Scholar
Ozen, C. A. & Rockwell, D. 2012 Three-dimensional vortex structure on a rotating wing. J. Fluid Mech. 707, 541550.Google Scholar
Peng, Z. & Zhu, Q. 2009 Energy harvesting through flow-induced oscillations of a foil. Phys. Fluids 21, 123602.Google Scholar
Pitt-Ford, C. W. & Babinsky, H. 2013 Lift and the leading-edge vortex. J. Fluid Mech. 720, 280313.Google Scholar
Poirel, D. & Mendes, F. 2014 Experimental small-amplitude self-sustained pitch–heave oscillations at transitional Reynolds numbers. AIAA J. 52 (8), 25772596.Google Scholar
Ramesh, K., Murua, J. & Gopalarathnam, A. 2015 Limit-cycle oscillations in unsteady flows dominated by intermittent leading-edge vortex shedding. J. Fluids Struct. 55, 84105.Google Scholar
Ringuette, M. J., Milano, M. & Gharib, M. 2007 Role of tip vortex in the force generation of low-aspect-ratio normal flat plates. J. Fluid Mech. 581, 453468.CrossRefGoogle Scholar
Rival, D., Prangemeier, T. & Tropea, C. 2009 The influence of airfoil kinematics on the formation of leading-edge vortices in bio-inspired flight. Exp. Fluids 46, 823833.Google Scholar
Sattari, P., Rival, D. E., Martinuzzi, R. J. & Tropea, C. 2012 Growth and separation of a start-up vortex from a two dimensional shear layer. Phys. Fluids 24, 107102.Google Scholar
Song, A., Tian, X., Israeli, E., Galvao, R., Bishop, K., Swartz, S. & Breuer, K. 2008 Aeromechanics of membrane wings with implications for animal flight. AIAA J. 46, 20962106.Google Scholar
Wang, C. & Eldredge, J. D. 2013 Low-order phenomenological modeling of leading-edge vortex formation. Theor. Comput. Fluid Dyn. 27 (5), 577598.Google Scholar
Xia, X. & Mohseni, K. 2013 Lift evaluation of a two-dimensional pitching flat plate. Phys. Fluids 25, 091901.CrossRefGoogle Scholar
Yilmaz, T. O. & Rockwell, D. 2012 Flow structures on finite-span wings due to pitch-up motion. J. Fluid Mech. 691, 518545.Google Scholar
Yu, H. T. & Bernal, L. P.2013 Effect of pivot point on aerodynamic force and vortical structure of pitching flat plate wings. AIAA Paper 2013-0792.CrossRefGoogle Scholar
Supplementary material: File

Onoue and Breuer supplementary material

Onoue and Breuer supplementary material 1

Download Onoue and Breuer supplementary material(File)
File 1.9 MB