Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T10:35:58.545Z Has data issue: false hasContentIssue false

Viscous-like forces control the impact response of shear-thickening dense suspensions

Published online by Cambridge University Press:  02 August 2021

Marc-Andre Brassard
Affiliation:
Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943, USA
Neil Causley
Affiliation:
Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943, USA
Nasser Krizou
Affiliation:
Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943, USA
Joshua A. Dijksman
Affiliation:
Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
Abram. H. Clark*
Affiliation:
Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943, USA
*
Email address for correspondence: [email protected]

Abstract

We experimentally and theoretically study impacts into dense cornstarch and water suspensions. We vary impact speed as well as intruder size, shape and mass, and we characterize the resulting dynamics using high-speed video and an onboard accelerometer. We numerically solve previously proposed models, most notably the added-mass model as well as a class of viscous-like models. In the viscous-like models, the intruder dynamics is dominated by large, viscous-like forces at the boundary of the jammed front where large shear rates and accompanying large viscosities are present. We find that our experimental data are consistent with this class of models and inconsistent with the added-mass model. Our results strongly suggest that the added-mass model, which is the dominant model for understanding the dynamics of impacts into shear-thickening dense suspensions, should be updated to include these viscous-like forces.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, B., Sokol, B., Mukhopadhyay, S., Maharjan, R. & Brown, E. 2018 System-spanning dynamically jammed region in response to impact of cornstarch and water suspensions. Phys. Rev. E 97, 052603.CrossRefGoogle ScholarPubMed
Barnes, H.A. 1989 Shear–thickening (‘dilatancy’) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33 (2), 329366.CrossRefGoogle Scholar
Bi, D., Zhang, J., Chakraborty, B. & Behringer, R.P. 2011 Jamming by shear. Nature 480 (7377), 355358.CrossRefGoogle ScholarPubMed
Brown, E. & Jaeger, H.M. 2009 Dynamic jamming point for shear thickening suspensions. Phys. Rev. Lett. 103, 086001.CrossRefGoogle ScholarPubMed
Brown, E. & Jaeger, H.M. 2014 Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys. 77 (4), 046602.CrossRefGoogle ScholarPubMed
Chen, D.Z., Zheng, H., Wang, D. & Behringer, R.P. 2019 Discontinuous rate-stiffening in a granular composite modeled after cornstarch and water. Nat. Commun. 10 (1), 1283.CrossRefGoogle Scholar
Clark, A.H., Kondic, L. & Behringer, R.P. 2012 Particle scale dynamics in granular impact. Phys. Rev. Lett. 109, 238302.CrossRefGoogle ScholarPubMed
Clark, A.H., Petersen, A.J. & Behringer, R.P. 2014 Collisional model for granular impact dynamics. Phys. Rev. E 89, 012201.CrossRefGoogle ScholarPubMed
Fall, A., Bertrand, F., Ovarlez, G. & Bonn, D. 2012 Shear thickening of cornstarch suspensions. J. Rheol. 56 (3), 575591.CrossRefGoogle Scholar
Fall, A., Lemaître, A., Bertrand, F., Bonn, D. & Ovarlez, G. 2010 Shear thickening and migration in granular suspensions. Phys. Rev. Lett. 105, 268303.CrossRefGoogle ScholarPubMed
Goldman, D.I. & Umbanhowar, P. 2008 Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 77, 021308.CrossRefGoogle ScholarPubMed
Guazzelli, É. & Pouliquen, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.CrossRefGoogle Scholar
Han, E., James, N.M. & Jaeger, H.M. 2019 a Stress controlled rheology of dense suspensions using transient flows. Phys. Rev. Lett. 123, 248002.CrossRefGoogle ScholarPubMed
Han, E., Peters, I.R. & Jaeger, H.M. 2016 High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming. Nat. Commun. 7 (1), 12243.CrossRefGoogle ScholarPubMed
Han, E., Van Ha, N. & Jaeger, H.M. 2017 Measuring the porosity and compressibility of liquid-suspended porous particles using ultrasound. Soft Matter 13 (19), 35063513.CrossRefGoogle ScholarPubMed
Han, E., Wyart, M., Peters, I.R. & Jaeger, H.M. 2018 Shear fronts in shear-thickening suspensions. Phys. Rev. Fluids 3, 073301.CrossRefGoogle Scholar
Han, E., Zhao, L., Van Ha, N., Hsieh, S.T., Szyld, D.B. & Jaeger, H.M. 2019 b Dynamic jamming of dense suspensions under tilted impact. Phys. Rev. Fluids 4, 063304.CrossRefGoogle Scholar
van Hecke, M. 2009 Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys.: Condens. Matter 22 (3), 033101.Google ScholarPubMed
Hoffman, R.L. 1972 Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. Trans. Soc. Rheol. 16 (1), 155173.CrossRefGoogle Scholar
Jerome, J.J.S., Vandenberghe, N. & Forterre, Y. 2016 Unifying impacts in granular matter from quicksand to cornstarch. Phys. Rev. Lett. 117 (9), 098003.CrossRefGoogle ScholarPubMed
Krizou, N. & Clark, A.H. 2020 Power-law scaling of early-stage forces during granular impact. Phys. Rev. Lett. 124, 178002.CrossRefGoogle ScholarPubMed
Lee, Y.S., Wetzel, E.D. & Wagner, N.J. 2003 The ballistic impact characteristics of Kevlar–Woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 38 (13), 28252833.CrossRefGoogle Scholar
Maharjan, R., Mukhopadhyay, S., Allen, B., Storz, T. & Brown, E. 2018 Constitutive relation for the system-spanning dynamically jammed region in response to impact of cornstarch and water suspensions. Phys. Rev. E 97, 052602.CrossRefGoogle ScholarPubMed
Mukhopadhyay, S., Allen, B. & Brown, E. 2018 Testing constitutive relations by running and walking on cornstarch and water suspensions. Phys. Rev. E 97, 052604.CrossRefGoogle ScholarPubMed
O'hern, C.S., Silbert, L.E., Liu, A.J. & Nagel, S.R. 2003 Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68 (1), 011306.CrossRefGoogle ScholarPubMed
Peters, I.R. & Jaeger, H.M. 2014 Quasi-2d dynamic jamming in cornstarch suspensions: visualization and force measurements. Soft Matter 10 (34), 65646570.CrossRefGoogle ScholarPubMed
Pradipto, & Hayakawa, H. 2021 Impact-induced hardening in dense frictional suspensions. Phys. Rev. Fluids 6, 033301.CrossRefGoogle Scholar
Seto, R., Mari, R., Morris, J.F & Denn, M.M. 2013 Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111 (21), 218301.CrossRefGoogle ScholarPubMed
Torquato, S. & Stillinger, F.H. 2010 Jammed hard-particle packings: from kepler to bernal and beyond. Rev. Mod. Phys. 82, 26332672.CrossRefGoogle Scholar
Uehara, J.S., Ambroso, M.A., Ojha, R.P. & Durian, D.J. 2003 Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90, 194301.CrossRefGoogle ScholarPubMed
Waitukaitis, S.R. 2014 Impact-Activated Solidification of Cornstarch and Water Suspensions. Springer.Google Scholar
Waitukaitis, S.R. & Jaeger, H.M. 2012 Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 487 (7406), 205209.CrossRefGoogle ScholarPubMed
Waitukaitis, S.R., Roth, L.K., Vitelli, V. & Jaeger, H.M. 2013 Dynamic jamming fronts. Europhys. Lett. 102 (4), 44001.CrossRefGoogle Scholar
Walsh, A.M., Holloway, K.E., Habdas, P. & de Bruyn, J.R. 2003 Morphology and scaling of impact craters in granular media. Phys. Rev. Lett. 91, 104301.CrossRefGoogle ScholarPubMed
Wang, D., Ren, J., Dijksman, J.A., Zheng, H. & Behringer, R.P. 2018 Microscopic origins of shear jamming for 2d frictional grains. Phys. Rev. Lett. 120, 208004.CrossRefGoogle ScholarPubMed
Wyart, M. & Cates, M.E. 2014 Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 112, 098302.CrossRefGoogle ScholarPubMed
Zhao, R., Zhang, Q., Tjugito, H. & Cheng, X. 2015 Granular impact cratering by liquid drops: understanding raindrop imprints through an analogy to asteroid strikes. Proc. Natl Acad. Sci. 112 (2), 342347.CrossRefGoogle ScholarPubMed