Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T19:09:05.578Z Has data issue: false hasContentIssue false

Viscous irrotational analysis of the deformation and break-up time of a bubble or drop in uniaxial straining flow*

Published online by Cambridge University Press:  09 November 2011

J. C. Padrino*
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
D. D. Joseph
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA Department of Mechanical and Aerospace Engineering, University of California–Irvine, Irvine, CA 92697, USA
*
Email address for correspondence: [email protected]

Abstract

The nonlinear deformation and break-up of a bubble or drop immersed in a uniaxial extensional flow of an incompressible viscous fluid is analysed by means of viscous potential flow. In this approximation, the flow field is irrotational and viscosity enters through the balance of normal stresses at the interface. The governing equations are solved numerically to track the motion of the interface by coupling a boundary-element method with a time-integration routine. When break-up occurs, the break-up time computed here is compared with results obtained elsewhere from numerical simulations of the Navier–Stokes equations (Revuelta, Rodríguez-Rodríguez & Martínez-Bazán J. Fluid Mech., vol. 551, 2006, p. 175), which thus keeps vorticity in the analysis, for several combinations of the relevant dimensionless parameters of the problem. For the bubble, for Weber numbers , predictions from viscous potential flow shows good agreement with the results from the Navier–Stokes equations for the bubble break-up time, whereas for larger , the former underpredicts the results given by the latter. When viscosity is included, larger break-up times are predicted with respect to the inviscid case for the same . For the drop, and considering moderate Reynolds numbers, , increasing the viscous effects of the irrotational motion produces large, elongated drops that take longer to break up in comparison with results for inviscid fluids. For larger , it comes as a surprise that break-up times smaller than the inviscid limit are obtained. Unfortunately, results from numerical analyses of the incompressible, unsteady Navier–Stokes equations for the case of a drop have not been presented in the literature, to the best of the authors’ knowledge; hence, comparison with the viscous irrotational analysis is not possible.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper is dedicated to the memory of Daniel D. Joseph (1929–2011).

References

1. Abramowitz, M. & Stegun, I. A.  (eds.) 1964 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. US Department of Commerce, tenth printing, December 1972.Google Scholar
2. Andersson, R. & Andersson, B. 2006 On the breakup of fluid particles in turbulent flows. AIChE J. 52, 20202030.CrossRefGoogle Scholar
3. Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
4. Bolanos-Jiménez, R., Sevilla, A., Martínez-Bazán, C., van der Meer, D. & Gordillo, J. M. 2009 The effect of liquid viscosity on bubble pinch-off. Phys. Rev. Lett. 21, 072103.Google Scholar
5. Burton, J. C., Waldrep, R. & Taborek, P. 2005 Scaling and instabilities in bubble pinch-off. Phys. Rev. Lett. 94, 184502.CrossRefGoogle ScholarPubMed
6. Canot, E., Davoust, L., Hammoumi, M. E. & Lachkar, D. 2003 Numerical simulation of the buoyancy-driven bouncing of a 2-D bubble at a horizontal wall. Theor. Comput. Fluid Dyn. 17, 5172.CrossRefGoogle Scholar
7. Chen, Y. J. & Steen, P. H. 1997 Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge. J. Fluid Mech. 341, 245267.CrossRefGoogle Scholar
8. Cohen, I., Brenner, M. P., Eggers, J. & Nagel, S. R. 1999 Two fluid drop snap-off problem: experiments and theory. Phys. Rev. Lett. 83, 11471150.CrossRefGoogle Scholar
9. Day, R. F., Hinch, E. J. & Lister, J. R. 1998 Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 80, 704707.CrossRefGoogle Scholar
10. Doshi, P., Cohen, I., Zhang, W. W., Siegel, M., Howell, P., Basaran, O. A. & Nagel, S. R. 2003 Persistence of memory in drop breakup: the breakdown of universality. Science 302, 11851188.CrossRefGoogle ScholarPubMed
11. Eastwood, C. D., Armi, L. & Lasheras, J. C. 2004 The breakup of immiscible fluids in turbulent flows. J. Fluid Mech. 502, 309333.CrossRefGoogle Scholar
12. Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flows. Phys. Rev. Lett. 71, 34583460.CrossRefGoogle Scholar
13. Georgescu, S. C., Achard, J. L. & Canot, E. 2002 Jet drops ejection in bursting gas bubbles processes. Eur. J. Mech. (B/Fluids) 21, 265280.CrossRefGoogle Scholar
14. Gordillo, J. M. 2008 Axisymmetric bubble collapse in a quiescent liquid pool. I. Theory and numerical simulations. Phys. Fluids 20, 112103.CrossRefGoogle Scholar
15. Gordillo, J. M., Sevilla, A., Rodríguez-Rodríguez, J. & Martínez-Bazán, C. 2005 Axisymmetric bubble pinch-off at high Reynolds numbers. Phys. Rev. Lett. 95, 194501.CrossRefGoogle ScholarPubMed
16. Guido, S. & Greco, F. 2004 Dynamics of a liquid drop in a flowing immiscible liquid. In Rheology Reviews 2004 (ed. Binding, D. M. & Walters, K. ), pp. 99142. The British Society of Rheology.Google Scholar
17. Heister, S. D. 1997 Boundary element methods for two-fluid free surface flows. Engng Anal. Bound. Elem. 19, 309317.CrossRefGoogle Scholar
18. Hilbing, J. H., Heister, S. D. & Spangler, C. A. 1995 A boundary-element method for atomization of a finite liquid jet. Atomiz. Sprays 5, 621638.CrossRefGoogle Scholar
19. Hinze, J. O. 1955 Fundamentals of the hydrodynamics mechanism of splitting in dispersion processes. AIChE J. 1, 289295.CrossRefGoogle Scholar
20. Joseph, D. D., Funada, T. & Wang, J. 2007 Potential Flows of Viscous and Viscoelastic Fluids. Cambridge University Press.CrossRefGoogle Scholar
21. Joseph, D. D. & Renardy, Y. Y. 1993 Fundamentals of Two-Fluid Dynamics, Part I: Mathematical Theory and Applications. Springer.Google Scholar
22. Kang, I. S. & Leal, L. G. 1987 Numerical solution of axisymmetric, unsteady free boundary problems at finite Reynolds number. I. Finite-difference scheme and its application to the deformation of a bubble in a uniaxial straining flow. Phys. Fluids 30, 19291940.CrossRefGoogle Scholar
23. Kang, I. S. & Leal, L. G. 1990 Bubble dynamics in time-periodic straining flows. J. Fluid Mech. 218, 4169.CrossRefGoogle Scholar
24. Keim, N. C., Møller, P., Zhang, W. W. & Nagel, S. R. 2006 Breakup of air bubbles in water: memory and breakdown of cylindrical symmetry. Phys. Rev. Lett. 97, 144503.CrossRefGoogle ScholarPubMed
25. Keller, J. B. & Miksis, M. J. 1983 Surface tension driven flows. SIAM J. Appl. Maths 43, 268277.CrossRefGoogle Scholar
26. Kolmogorov, A. N. 1949 On the breakage of drops in a turbulent flow. Dokl. Akad. Nauk SSSR 66, 825828.Google Scholar
27. Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press, reprinted by Cambridge University Press, 1993.Google Scholar
28. Leppinen, D. & Lister, J. R. 2003 Capillary pinch-off in inviscid fluids. Phys. Fluids 15, 568578.CrossRefGoogle Scholar
29. Lister, J. R. & Stone, H. 1998 Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10, 27582764.CrossRefGoogle Scholar
30. Longuet-Higgins, M. S. & Cokelet, E. D. 1976 The deformation of steep surface waves on water. I. A numerical method of computation. Proc. R. Soc. Lond. Ser. A 350, 126.Google Scholar
31. Lundgren, T. S. & Mansour, N. N. 1988 Oscillations of drops in zero gravity with weak viscous effects. J. Fluid Mech. 194, 479510.CrossRefGoogle Scholar
32. Martínez-Bazán, C., Montanes, J. L. & Lasheras, J. C. 1999a On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 401, 157182.CrossRefGoogle Scholar
33. Martínez-Bazán, C., Montanes, J. L. & Lasheras, J. C. 1999b On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size pdf of the resulting daughter bubbles. J. Fluid Mech. 401, 183207.CrossRefGoogle Scholar
34. Melville, W. K. 1996 The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid Mech. 18, 279321.CrossRefGoogle Scholar
35. Miksis, M., Vanden-Broeck, J.-M. & Keller, J. B. 1982 Rising bubbles. Phys. Fluids 123, 3141.Google Scholar
36. Oguz, H. & Prosperetti, A. 1990 Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143179.CrossRefGoogle Scholar
37. Padrino, J. C. 2010 Topics in viscous potential flow of two-phase systems. Chapter 2: Viscous irrotational analysis of the deformation and break-up time of a bubble or drop in uniaxial straining flow. PhD thesis, University of Minnesota, Minneapolis, MN, USA.CrossRefGoogle Scholar
38. Padrino, J. C., Funada, T. & Joseph, D. D. 2008 Purely irrotational theories for the viscous effects on the oscillations of drops and bubbles. Intl J. Multiphase Flow 34, 6175.CrossRefGoogle Scholar
39. Quan, S. & Hua, J. 2008 Numerical studies of bubble necking in viscous liquids. Phys. Rev. Lett. 77, 066303.Google ScholarPubMed
40. Ramaswamy, S. & Leal, L. G. 1997 A note on inertial effects in the deformation of Newtonian drops in a uniaxial extensional flow. Intl J. Multiphase Flow 23, 561574.CrossRefGoogle Scholar
41. Revuelta, A., Rodríguez-Rodríguez, J. & Martínez-Bazán, C. 2006 Bubble break-up in a straining flow at finite Reynolds numbers. J. Fluid Mech. 551, 175184.CrossRefGoogle Scholar
42. Risso, F. & Fabre, J. 1998 Oscillations and breakup of a bubble immersed in a turbulent field. J. Fluid Mech. 372, 323355.CrossRefGoogle Scholar
43. Rodríguez-Rodríguez, J. 2004 Estudio de la rotura de gotas y burbujas en flujos a altos números de Reynolds. PhD thesis, Universidad Carlos III de Madrid, Madrid.Google Scholar
44. Rodríguez-Rodríguez, J., Gordillo, J. M. & Martínez-Bazán, C. 2006 Breakup time and morphology of drops and bubbles in a high-Reynolds-number flow. J. Fluid Mech. 548, 6986.CrossRefGoogle Scholar
45. Rodríguez-Rodríguez, J., Martínez-Bazán, C. & Montanes, J. L. 2003 A novel particle tracking and break-up detection algorithm: application to the turbulent break-up of bubbles. Meas. Sci. Technol. 14, 13281340.CrossRefGoogle Scholar
46. Sierou, A. & Lister, J. R. 2003 Self-similar solutions for viscous capillary pinch-off. J. Fluid Mech. 497, 381403.CrossRefGoogle Scholar
47. Stroud, A. H. & Secrest, A. H. 1966 Gaussian Quadrature Formulae. Prentice Hall.Google Scholar
48. Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2007 Experiments on bubble pinch-off. Phys. Fluids 19, 042101.CrossRefGoogle Scholar