Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T21:39:17.929Z Has data issue: false hasContentIssue false

Viscous interactions of two co-rotating vortices before merging

Published online by Cambridge University Press:  24 September 2002

STÉPHANE LE DIZÈS
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre (IRPHE), 49, rue F. Joliot Curie, BP 146, F-13384 Marseille cedex 13, France
ALBERTO VERGA
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre (IRPHE), 49, rue F. Joliot Curie, BP 146, F-13384 Marseille cedex 13, France

Abstract

The viscous evolution of two co-rotating vortices is analysed using direct two-dimensional numerical simulations of the Navier–Stokes equations. The article focuses on vortex interaction regimes before merging. Two parameters are varied: a steepness parameter n which measures the steepness of the initial vorticity profiles in a given family of profiles, and the Reynolds number Re (between 500 and 16 000). Two distinct relaxation processes are identified. The first one is non-viscous and corresponds to a rapid adaptation of each vortex to the external (strain) field generated by the other vortex. This adaptation process, which is profile dependent, is described and explained using the damped Kelvin modes of each vortex. The second relaxation process is a slow diffusion phenomenon. It is similar to the relaxation of any non-Gaussian axisymmetrical vortex towards the Gaussian. The quasi-stationary solution evolves on a viscous-time scale toward a single attractive solution which corresponds to the evolution from two initially Gaussian vortices. The attractive solution is analysed in detail up to the merging threshold a/b ≈ 0.22 where a and b are the vortex radius and the separation distance respectively. The vortex core deformations are quantified and compared to those induced by a single vortex in a rotating strain field. A good agreement with the asymptotic predictions is demonstrated for the eccentricity of vortex core streamlines. A weak anomalous Reynolds number dependence of the solution is also identified. This dependence is attributed to the advection–diffusion of vorticity towards the hyperbolic points of the system and across the separatrix connecting these points. A Re1/3 scaling for the vorticity at the central hyperbolic point is obtained. These findings are discussed in the context of a vortex merging criterion.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)