Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T22:06:59.089Z Has data issue: false hasContentIssue false

The viscosity-volume fraction relation for suspensions of rod-like particles by falling-ball rheometry

Published online by Cambridge University Press:  26 April 2006

William J. Milliken
Affiliation:
Department of Chemical Engineering, University of California, Davis, CA 95616, USA
Moshe Gottlieb
Affiliation:
Department of Chemical Engineering, Ben Gurion University, Beer Sheva 84105, Israel
Alan L. Graham
Affiliation:
Los Alamos National Laboratory, WX-4, Los Alamos, NM 87545, USA
Lisa A. Mondy
Affiliation:
Sandia National Laboratories, Div. 1511, Albuquerque, NM 87185, USA
Robert L. Powell
Affiliation:
Department of Chemical Engineering, University of California, Davis, CA 95616, USA

Abstract

The relative viscosities of suspensions of randomly oriented rods in a Newtonian fluid were measured using falling-ball rheometry. The rods were monodisperse and sufficiently large to render colloidal and Brownian forces negligible. Steel and brass ball bearings were dropped along the centreline of cylindrical columns containing the suspensions. The terminal velocities of the falling balls were measured and used to determine the average viscosities of the suspensions. The suspensions behaved as Newtonian fluids in that they were characterized by a constant viscosity. They exhibited a linear relative viscosity-volume fraction relationship for volume fractions less than 0.125, and, for volume fractions between 0.125 and 0.2315, the specific viscosity increased with the cube of the volume fraction. The relative viscosity was found to be independent of falling-ball size for a ratio of falling ball to fibre length greater than 0.3. It was found to be independent of the diameter of the containing cylindrical column for a ratio of column diameter to fibre length greater than 3.2. The value determined for the intrinsic viscosity is in good agreement with theoretical predictions for suspensions of randomly oriented rods.

Type
Research Article
Copyright
© 1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attanasio, A., Bernini, U., Gallopo, P. & Segré, G. 1972 Trans. Soc. Rheol. 16, 147.
Batchelor, G. K.: 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bibbo, M. A., Dinh, S. M. & Armstrong, R. C., 1985 J. Rheol. 29, 905.
Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O., 1987 Dynamics of Polymeric Liquids, Volume II, Kinetic Theory. Wiley.
Bitsanis, I., Davis, H. T. & Tirrell, M., 1988 Macromolecules 21, 2824.
Blakney, W. R.: 1966 J. Colloid Interface Sci. 22, 324.
Bohlin, T.: 1960 Trans. R. Inst. Tech. (Stockholm) No. 155.
Brenner, H.: 1974 Intl. J. Multiphase Flow 1, 195.
Cox, R. G.: 1970 J. Fluid Mech. 44, 791.
Doi, M.: 1975 J. Phys. Paris 36, 607.
Doi, M. & Edwards, S. F., 1978a J. Chem. Soc. Faraday Trans. II, 74, 560.
Doi, M. & Edwards, S. F., 1978b J. Chem. Soc. Faraday Trans. II, 74, 918.
Faxén, H.: 1923 Arkiv. f. Mat. Astron. Och Fysik 17, No. 273.
Forgacs, O. L. & Mason, S. G., 1959 J. Colloid Sci. 14, 457.
Ganani, E. & Powell, R. L., 1985 J. Composite Matl. 19, 194.
Ganani, E. & Powell, R. L., 1986 J. Rheol. 30, 995.
Gottlieb, M.: 1979 J. Non-Newtonian Fluid Mech. 6, 97.
Graham, A. L., Mondy, L. A., Gottlieb, M. & Powell, R. L., 1987 Appl. Phys. Lett. 50, 127.
Haber, S. & Brenner, H., 1984 J. Colloid Interface Sci. 97, 496.
Hermans, J.: 1962 J. Colloid Sci. 17, 638.
Ivanov, Y., Van de Ven, T. G. M. & Mason, S. G. 1982 J. Rheol. 26, 213.
Jeffery, G. B.: 1922 Proc. R. Soc. Lond. A 102, 161.
Keep, G. T. & Pecora, R., 1985 Macromol. 18, 1167.
Kroschwitz, J. I. (ed.) 1987 Encyclopedia of Polymer Science and Engineering. Wiley.
Lam, R., Rakesh, L. & Powell, R. L., 1985 J. Polymer Sci. Polymer Phys. Ed. 23, 1263.
Magda, J. J., Davis, H. T. & Tirrell, M., 1986 J. Chem. Phys. 85, 6674.
Mondy, L. A., Graham, A. L. & Jensen, J. L., 1986a J. Rheol. 30, 1031.
Mondy, L. A., Graham, A. L., Majumdar, A. & Bryant, L. E., 1986b Intl J. Multiphase Flow 12, 497.
Nawab, M. A. & Mason, S. G., 1958 J. Phys. Chem. 62, 1248.
Okagawa, A., Cox, R. G. & Mason, S. G., 1973 J. Colloid Interface Sci. 45, 303.
Saito, N.: 1951 J. Phys. Soc. Japan 6, 297.
Simha, R.: 1940 J. Phys. Chem. 44, 25.
Sonshine, R. M., Cox, R. G. & Brenner, H., 1966a Appl. Sci. Res. 16, 273.
Sonshine, R. M., Cox, R. G. & Brenner, H., 1966b Appl. Sci. Res. 16, 325.
Tanner, R. I.: 1961 J. Fluid Mech. 17, 161.
Thomas, D. G.: 1965 J. Colloid Sci. 20, 267.
Trevelyan, B. J. & Mason, S. G., 1951 J. Colloid Sci. 6, 354.
Walpole, R. E. & Myers, R. H., 1972 Probability and Statistics for Engineers and Scientists. Macmillan.
Weast, R. C. (ed.) 1986 Handbook of Chemistry and Physics. Boca Raton, Fl: CRC Press.