Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T06:07:40.889Z Has data issue: false hasContentIssue false

Vibrational convection in a heterogeneous binary mixture. Part 1. Time-averaged equations

Published online by Cambridge University Press:  14 May 2019

Anatoliy Vorobev*
Affiliation:
Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
Tatyana Lyubimova
Affiliation:
Institute of Continuous Media Mechanics Ural Branch RAS, Perm, 614013, Russia Perm State University, Perm, 614990, Russia
*
Email address for correspondence: [email protected]

Abstract

High-frequency vibrations of a container filled with a fluid generate pulsation flows that however are barely visible with the naked eye, and induce the slow but large-amplitude averaged flows that are important for various practical applications. In this work we derive a theoretical model that gives the averaged description of the influence of uniform high-frequency vibrations on an isothermal mixture of two slowly miscible liquids. The miscible multiphase system is described within the framework of the phase-field approach. The full Cahn–Hillard–Navier–Stokes equations are split into the separate systems for the quasi-acoustic, pulsating and averaged flow fields, eliminating the need for the resolution of the short time scale pulsation motion and thus making the analysis of the long-term evolution much more efficient. The resultant averaged model includes the effects of concentration diffusion and barodiffusion, the dynamic interfacial stresses and the generation of the hydrodynamic flows by non-homogeneities of the concentration field (when they are combined with the effects of gravity and vibrations). The resultant model for the vibrational convection in a heterogeneous mixture of two fluids separated by diffusive boundaries could be used for the description of processes of mixing/de-mixing, solidification/melting, polymerisation, etc. in the presence of vibrations.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadlouydarab, M. & Feng, J. J. 2014 Motion and coalescence of sessile drops driven by substrate wetting gradient and external flow. J. Fluid Mech. 746, 214235.Google Scholar
Chella, R. & Vinals, J. 1996 Mixing of a two-phase fluid by cavity flow. Phys. Rev. E 53, 38323840.Google Scholar
Ding, H., Spelt, P. D. M. & Shu, C. 2007 Diffuse interface model for incompressible two-phase flows with large density ratios. Comput. Phys. 226, 20782095.Google Scholar
Gan, L. H., Gan, Y. Y. & Deen, G. R. 2000 Poly(n-acryloyl-n-propylpiperazine): a new stimuli-responsive polymer. Macromolecules 33, 78937897.Google Scholar
Gaponenko, Y., Torregrosa, M. M., Yasnou, V., Mialdun, A. & Shevtsova, V. 2015a Interfacial pattern selection in miscible liquids under vibration. Soft Matt. 11, 82218224.Google Scholar
Gaponenko, Y. A. & Shevtsova, V. 2010 Effects of vibrations on dynamics of miscible liquids. Acta Astron. 66, 174182.Google Scholar
Gaponenko, Y. A., Torregrosa, M., Yasnou, V., Mialdun, A. & Shevtsova, V. 2015b Dynamics of the interface between miscible liquids subjected to horizontal vibration. J. Fluid Mech. 784, 342372.Google Scholar
Gaponenko, Y. A., Volpert, V. A., Zen’kovskaya, S. M. & Pojman, D. A. 2006 Effect of high-frequency vibration on convection in miscible fluids. J. Fluid Mech. 47, 190198.Google Scholar
Gershuni, G. Z. & Lyubimov, D. V. 1998 Thermal Vibrational Convection. Wiley.Google Scholar
Jacqmin, D. 1999 Calculation of two-phase navierstokes flows using phase-field modeling. Comput. Phys. 155, 96127.Google Scholar
Joseph, D. D. & Renardy, Y. Y. 1993 Fundamentals of two-fluid dynamics. Part II: lubricated transport, drops and miscible liquids. Springer.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1980 Statistical Physics, 3rd edn. Part 1. Pergamon Press.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, (Course of Theoretical Physics) , vol. 6. Pergamon Press.Google Scholar
Legendre, M., Petitjeans, P. & Kurowski, P. 2003 Instabilités à l’interface entre fluides miscibles par forcage oscillant horizontal. C. R. Méc. 331 (2), 617622.Google Scholar
Lowengrub, J. & Truskinovsky, L. 1998 Quasi-incompressible cahn-hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454 (2), 26172654.Google Scholar
Lyubimov, D. V., Lyubimova, T. P. & Cherepanov, A. A. 2003 Dynamics of Interfaces Subject to Vibrations. FizMatLit (in Russian).Google Scholar
Lyubimov, D., Lyubimova, T., Vorobev, A., Mojtabi, A. & Zappoli, B. 2006a Thermal vibrational convection in near-critical fluids. Part I: non-uniform heating. J. Fluid Mech. 564, 159183.Google Scholar
Lyubimov, D., Lyubimova, T., Vorobev, A., Mojtabi, A. & Zappoli, B. 2006b Thermal vibrational convection in near-critical fluids. Part II: weakly non-uniform heating. J. Fluid Mech. 564, 185196.Google Scholar
Lyubimova, T., Vorobev, A. & Prokopev, S. 2019 Rayleigh-taylor instability of a miscible interface in a confined domain. Phys. Fluids 31, 014104.Google Scholar
Mason, W. P.(Ed.) 1965 Physical Acoustics, Volume II Part B: Principles and Methods, Properties of Polymers and Nonlinear Acoustics. Academic Press.Google Scholar
Pojman, J. A., Whitmore, C., Liveri, M. L. T., Lombardo, R., Marszalek, J., Parker, R. & Zoltowski, B. 2006 Evidence for the existence of an effective interfacial tension between miscible fluids: isobutyric acid-water and 1-butanol-water in a spinning-drop tensiometer. Langmuir 22, 25692577.Google Scholar
Prokopev, S., Vorobev, A. & Lyubimova, T. 2019 Phase-field modeling of an immiscible liquid-liquid displacement in a capillary. Phys. Rev. E 99, 033113.Google Scholar
Schlichting, H. & Gersten, K. 2017 Boundary-Layer Theory. Springer.Google Scholar
Shevtsova, V., Gaponenko, Y., Yasnou, V., Mialdun, A. & Nepomnyashchy, A. 2015 Wall-generated pattern on a periodically excited miscible liquid/liquid interface. Langmuir 31, 55505553.Google Scholar
Shevtsova, V., Gaponenko, Y. A., Yasnou, V., Mialdun, A. & Nepomnyashchy, A. 2016 Two-scale wave patterns on a periodically excited miscible liquid–liquid interface. J. Fluid Mech. 795, 409422.Google Scholar
Umantsev, A. 2002 Thermal effects in dynamics of interfaces. J. Chem. Phys. 116, 42524265.Google Scholar
Vorobev, A. 2010 Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. Phys. Rev. E 82 (10), 056312.Google Scholar
Vorobev, A. 2014 Dissolution dynamics of miscible liquid/liquid interfaces. Curr. Opin. Colloid Interface Sci. 19, 300308.Google Scholar
Vorobev, A. & Boghi, A. 2016 Phase-field modelling of a miscible system in spinning droplet tensiometer. J. Colloid Interface Sci. 482, 193204.Google Scholar
Vorobev, A., Ivantsov, A. & Lyubimova, T. 2017 Phase-field modelling of gravity-capillary waves on a miscible interface. Eur. Phys. J. E 40, 99.Google Scholar
Vorobev, A. & Khlebnikova, E. 2018 Modelling of the rise and adsorption of a fluid inclusion. Intl J. Heat Mass Transfer 125, 801814.Google Scholar
Wolf, G. H. 2018 Dynamic stabilization of the Rayleigh-Taylor instability of miscible liquids and the related ‘frozen waves’. Phys. Fluids 30, 021701.Google Scholar
Xie, R. & Vorobev, A. 2016 On the phase-field modelling of a miscible liquid/liquid boundary. J. Colloid Interface Sci. 464, 4858.Google Scholar
Zappoli, B., Beysens, D. & Garrabos, Y. 2015 Heat Transfers and Related Effects in Supercritical Fluids. Springer.Google Scholar