Article contents
Variable-density miscible displacements in a vertical Hele-Shaw cell: linear stability
Published online by Cambridge University Press: 25 July 2007
Abstract
A computational study based on the Stokes equations is conducted to investigate the effects of gravitational forces on miscible displacements in vertical Hele-Shaw cells. Nonlinear simulations provide the quasi-steady displacement fronts in the gap of the cell, whose stability to spanwise perturbations is subsequently examined by means of a linear stability analysis. The two-dimensional simulations indicate a marked thickening (thinning) and slowing down (speeding up) of the displacement front for flows stabilized (destabilized) by gravity. For the range investigated, the tip velocity is found to vary linearly with the gravity parameter. Strongly stable density stratifications lead to the emergence of flow patterns with spreading fronts, and to the emergence of a secondary needle-shaped finger, similar to earlier observations for capillary tube flows. In order to investigate the transition between viscously driven and purely gravitational instabilities, a comparison is presented between displacement flows and gravity-driven flows without net displacements.
The linear stability analysis shows that both the growth rate and the dominant wavenumber depend only weakly on the Péclet number. The growth rate varies strongly with the gravity parameter, so that even a moderately stable density stratification can stabilize the displacement. Both the growth rate and the dominant wavelength increase with the viscosity ratio. For unstable density stratifications, the dominant wavelength is nearly independent of the gravity parameter, while it increases strongly for stable density stratifications. Finally, the kinematic wave theory of Lajeunesse et al. (J. Fluid Mech. vol. 398, 1999, p. 299) is seen to capture the stability limit quite accurately, while the Darcy analysis misses important aspects of the instability.
- Type
- Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2007
References
REFERENCES
- 28
- Cited by