Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T22:50:00.311Z Has data issue: false hasContentIssue false

Vapour bubble collapse in isothermal and non-isothermal liquids

Published online by Cambridge University Press:  25 April 2008

BINZE YANG
Affiliation:
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
ANDREA PROSPERETTI*
Affiliation:
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA Faculty of Applied Science and Burgerscentrum, University of Twente, AE 7500 Enschede, The Netherlands
*
Author to whom correspondence should be addressed: [email protected].

Abstract

The motion of a vapour bubble in a subcooled liquid is studied numerically assuming axial symmetry but allowing the surface to deform under the action of the fluid dynamic stress. The flattening of the bubble in the plane orthogonal to the translational velocity increases the added mass and slows it down, while, at the same time, the decreasing volume tends to increase the velocity. The deformation of the interface also increases the surface area exposed to the incoming cooler liquid. The competition among these opposing processes is subtle and the details of the condensation cannot be captured by simpler models, two of which are considered. In spite of these differences, the estimate of the total collapse time given by a spherical model is close to that of the deforming bubble model for the cases studied. In addition to an isothermal liquid, some examples in which the bubble encounters warmer and colder liquid regions are shown.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdelmessih, A. H., Hooper, F. C. & Nangia, S. 1972 Flow effects on bubble growth and collapse in surface boiling. Intl J. Heat Mass Transfer 15, 115125.CrossRefGoogle Scholar
Blanco, A. & Magnaudet, J. 1995 The structure of axisymmetric high-Reynolds number flow around an ellipsoidal bubble of fixed shape. Phys. Fluids 7, 12651274.CrossRefGoogle Scholar
Brown, D. L., Cortez, R. & Minion, M. L. 2001 Accurate projection methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 168, 464499.CrossRefGoogle Scholar
Cao, J. & Christensen, R. N. 2000 Analysis of moving boundary problem for bubble collapse in binary solutions. Num. Heat Transfer A 87, 681699.Google Scholar
Chen, Y. & Mayinger, F. 1992 Measurement of heat transfer at the phase interface of condensing bubbles. Intl J. Multiphase Flow 18, 877890.CrossRefGoogle Scholar
Darwin, C. 1953 Note on hydrodynamics. Proc. Camb. Phil. Soc. 49, 342354.CrossRefGoogle Scholar
Duraiswami, R. & Prosperetti, A. 1992 Orthogonal mapping in two dimensions. J. Comput. Phys. 98, 254268.CrossRefGoogle Scholar
Eames, I., Belcher, S. E. & Hunt, J. C. R. 1994 Drift, partial drift and Darwin's proposition. J. Fluid Mech. 275, 201223.CrossRefGoogle Scholar
Florschuetz, L. & Chao, B. 1965 On the mechanics of vapour bubble collapse. J. Heat Transfer 87, 209220.CrossRefGoogle Scholar
Francois, M. & Shyy, W. 2003 Computations of drop dynamics with the immersed boundary method, Part 1: Numerical algorithm and buoyancy-induced effect. Numer. Heat Transfer B 44, 101118.CrossRefGoogle Scholar
Gumerov, N. 1996 The heat and mass transfer of a vapour bubble with translatory motion at high Nusselt numbers. Intl J. Multiphase Flow 22, 259272.CrossRefGoogle Scholar
Hao, Y. & Prosperetti, A. 1999 The dynamics of vapour bubbles in acoustic pressure fields. Phys. Fluids 11, 20082019.CrossRefGoogle Scholar
Hao, Y. & Prosperetti, A. 2000 The collapse of vapour bubbles in a spatially non-uniform flow. Intl J. Heat Mass Transfer 43, 35393550.CrossRefGoogle Scholar
Hashimoto, H. & Kawano, S. 1990 A study on encapsulated liquid drop formation in liquid-liquid-gas systems. JSME Intl J. B33, 729735.Google Scholar
Ivashnyov, O. E. & Smirnov, N. N. 2004 Thermal growth of a vapour bubble moving in superheated liquid. Phys. Fluids 16, 809823.CrossRefGoogle Scholar
Kalman, H. & Ullmann, A. 1999 Experimental analysis of bubble shapes during condensation in miscible and immiscible liquids. J. Heat Transfer 121, 496502.Google Scholar
Kawano, S., Hashimoto, H. & Ihara, A. 1996 Sequential production of mm-sized spherical shells in liquid-liquid gas systems. Trans. ASME: J. Fluids Engng 118, 614618.Google Scholar
Labuntsov, D. & Kryukov, A. 1979 Analysis of intensive evaporation and condensation. Intl J. Heat Mass Transfer 22, 9891002.CrossRefGoogle Scholar
Leal, L. G. 1989 Velocity transport and wake structure for bluff bodies at finite Reynolds number. Phys. Fluids A 1, 124131.CrossRefGoogle Scholar
Legendre, D., Borée, J. & Magnaudet, J. 1998 Thermal and dynamic evolution of a spherical bubble moving steadily in a superheated or subcooled liquid. Phys. Fluids 10, 12561272.CrossRefGoogle Scholar
Levich, V. 1962 Physicochemical Hydrodynamics. Prentice-Hall.Google Scholar
Li, W. Z. & Yan, Y. Y. 2002 An alternating dependent variables (ADV) method for treating slip boundary conditions of free sutface flows with heat and mass transfer. Numer. Heat Transfer B 41, 165189.CrossRefGoogle Scholar
Li, W. Z., Yan, Y. Y. & Hull, J. B. 2003 a The propagation of temperature and concentration fields around a deformed gas bubble rising in a quiescent hot or bi-solution liquid. Intl J. Numer. Meth. Heat Fluid Flow 8, 940963.CrossRefGoogle Scholar
Li, W. Z., Yan, Y. Y. & Smith, J. M. 2003 b A numerical study of the interfacial transport characteristics outside spheroidal bubbles and solids. Intl J. Multiphase Flow 29, 435460.CrossRefGoogle Scholar
Lighthill, M. J. 1956 Drift. J. Fluid Mech. 1, 3153, and corrigendum, 2, 311–312.CrossRefGoogle Scholar
Milne-Thomson, L. 1960 Theoretical Hydrodynamics, 4th edn. MacMillan.Google Scholar
Moalem, D. & Sideman, S. 1973 The effect of motion on bubble collapse. Intl J. Heat Mass Transfer 16, 23212329.CrossRefGoogle Scholar
Moore, D. 1965 The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J. Fluid Mech. 23, 749766.CrossRefGoogle Scholar
Mukherjee, A. & Dhir, V. 2004 Study of lateral merger of vapour bubbles during nucleate pool boiling. J. Heat Transfer 126, 10231039.CrossRefGoogle Scholar
Osher, S. & Fedkiw, R. 2001 Level set methods: an overview and some recent results. J. Comput. Phys. 169, 463502.CrossRefGoogle Scholar
Plesset, M. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145185.CrossRefGoogle Scholar
Prosperetti, A. & Hao, Y. 1999 Modelling of spherical gas bubble oscillations and sonoluminescence. Phil. Trans. R. Soc. Lond. A 357, 203223.CrossRefGoogle Scholar
Prosperetti, A. & Hao, Y. 2002 Vapour bubbles in flow and acoustic fields. Ann. New York Acad. Sci. 974, 328347.CrossRefGoogle ScholarPubMed
Raad, P. E. & R., , B., 2005 The three-dimensional Eulerian-Lagrangian marker and micro cell method for the simulation of free surface flows. J. Comput. Phys. 203, 668699.CrossRefGoogle Scholar
Ruckenstein, E. 1959 On heat transfer between vapour bubbles in motion and the boiling liquid from which they are generated. Chem. Engng Sci. 10, 2230.CrossRefGoogle Scholar
Ruckenstein, E. & Davis, J. 1971 The effects of bubble translation on vapour bubble growth in a superheated liquid. Intl J. Heat Mass Transfer 14, 939952.CrossRefGoogle Scholar
Ryskin, G. & Leal, L. 1983 Orthogonal mapping in two dimensions. J. Comput. Phys. 98, 254268.Google Scholar
Ryskin, G. & Leal, L. 1984 Numerical solution of free-boundary problems in fluid mechanics. Part 5. Buoyancy-driven motion of a gas bubble through a quiescent liquid. J. Fluid Mech. 148, 1935.CrossRefGoogle Scholar
Sardić-Mitrović, A. N., Mohamed, N. A. & Fernando, H. J. S. 1999 Gravitational settling of particles through density interfaces. J. Fluid Mech. 381, 175198.CrossRefGoogle Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Dyn. 31, 567603.CrossRefGoogle Scholar
Scardovelli, R. & Zaleski, S. 2003 Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection. Intl J. Numer. Meth. Fluids 41, 251274.CrossRefGoogle Scholar
Shirani, E., Ashgriz, N. & Mostaghimi, J. 2005 Interface pressure calculation based on conservation of momentum for front capturing methods. J. Comput. Phys. 203, 154175.CrossRefGoogle Scholar
Son, G. & Dhir, V. 1997 Numerical simulation of saturated film boiling on a horizontal surface. J. Heat Transfer 119, 525533.CrossRefGoogle Scholar
Son, G., Ramanujapu, N. & Dhir, V. 2002 Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling. J. Heat Transfer 124, 5162.CrossRefGoogle Scholar
Szeri, A. J., Storey, B. D., Pearson, A. & Blake, J. R. 2003 Heat and mass transfer during the violent collapse of nonspherical bubbles. Phys. Fluids 15, 25762586.CrossRefGoogle Scholar
Takagi, S., Matsumoto, Y. & Huang, H. 1997 Numerical analysis of a single rising bubble using boundary-fitted coordinate system. JSME Intl J. B40, 4250.CrossRefGoogle Scholar
Udaykumar, H. S., Mittal, R., Rampunggoon, P. & Khanna, A. 2001 A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174, 345380.CrossRefGoogle Scholar
Wittke, D. & Chao, B. 1967 Collapse of vapour bubbles with translatory motion. J. Heat Transfer 89, 1724.CrossRefGoogle Scholar
Yang, B. & Prosperetti, A. 2006 A second-order boundary-fitted projection method for free-surface flow computations. J. Comput. Phys. 213, 574590.CrossRefGoogle Scholar
Yang, B. & Prosperetti, A. 2007 Linear stability of the flow past a spheroidal bubble. J. Fluid Mech. 582, 5378.CrossRefGoogle Scholar
Yang, B., Prosperetti, A. & Takagi, S. 2003 The transient rise of a bubble subject to shape or volume changes. Phys. Fluids 15, 26402648.CrossRefGoogle Scholar
Ye, T., Shyy, W. & Chung, J. N. 2003 A fixed-grid, sharp-interface method for bubble dynamics and phase change. J. Comput. Phys. 174, 781815.CrossRefGoogle Scholar
Yuan, H. & Prosperetti, A. 1997 Gas-liquid heat transfer in a bubble collapsing near a wall. Phys. Fluids 9, 127142.CrossRefGoogle Scholar