Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T21:47:03.884Z Has data issue: false hasContentIssue false

Unsteady swimming of small organisms

Published online by Cambridge University Press:  01 June 2012

S. Wang
Affiliation:
Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
A. M. Ardekani*
Affiliation:
Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
*
Email address for correspondence: [email protected]

Abstract

Small planktonic organisms ubiquitously display unsteady or impulsive motion to attack a prey or escape a predator in natural environments. Despite this, the role of unsteady forces such as history and added mass forces on the low-Reynolds-number propulsion of small organisms, e.g. Paramecium, is poorly understood. In this paper, we derive the fundamental equation of motion for an organism swimming by means of the surface distortion in a non-uniform background flow field at a low-Reynolds-number regime. We show that the history and added mass forces are important as the product of Reynolds number and Strouhal number increases above unity. Our results for an unsteady squirmer show that unsteady inertial effects can lead to a non-zero mean velocity for the cases with zero streaming parameters, which have zero mean velocity in the absence of inertia.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. van Aartrijk, M. & Clercx, H. J. H. 2010 Vertical dispersion of light inertial particles in stably stratified turbulence: the influence of the Basset force. Phys. Fluids 22 (1), 013301.Google Scholar
2. Alexander, G. P. & Yeomans, J. M. 2010 Hydrodynamic interactions at low Reynolds number. Exp. Mech. 50 (9), 12831292.Google Scholar
3. Ardekani, A. M., Joseph, D. D., Dunn-Rankin, D. & Rangel, R. H. 2009 Particle–wall collision in a viscoelastic fluid. J. Fluid Mech. 633, 475483.CrossRefGoogle Scholar
4. Ardekani, A. M. & Rangel, R. H. 2006 Unsteady motion of two solid spheres in Stokes flow. Phys. Fluids 18, 103306.CrossRefGoogle Scholar
5. Arminski, L. & Weinbaum, S. 1979 Effect of waveform and duration of impulse on the solution to the Basset–Langevin equation. Phys. Fluids 22 (3), 404411.CrossRefGoogle Scholar
6. Basset, A. B. 1888 Treatise on Hydrodynamics, vol. 2, p. 285. Deighton Bell, chap. 22.Google Scholar
7. Blake, J. R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199208.CrossRefGoogle Scholar
8. Boussinesq, J. 1885 Sur la resistance qu’oppose un liquide indefini en repos. C. R. Acad. Sci. Paris 100, 935937.Google Scholar
9. Brennen, C 1974 An oscillating-boundary-layer theory for ciliary propulsion. J. Fluid Mech. 65 (4), 799824.Google Scholar
10. Burgers, J. M. 1938 2nd Report on Viscosity and Plasticity, vol. 16. Amsterdam Academy of Sciences, Nordemann Publishing Co, chap. 3.Google Scholar
11. Daniel, T. L. 1984 Unsteady aspects of aquatic locomotion. Am. Zool. 24, 121134.CrossRefGoogle Scholar
12. Doostmohammadi, A., Stocker, R. & Ardekani, A. M. 2012 Swimming at pycnoclines. Proc. Natl Acad. Sci. USA 109, 38563861.CrossRefGoogle ScholarPubMed
13. Drescher, K., Leptos, K., Tuval, I., Ishikawa, T., Pedley, T. J. & Goldstein, R. E. 2009 Dancing volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102 (16), 168101.CrossRefGoogle ScholarPubMed
14. Gatignol, R. 1983 The Faxen formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Méc. Théor. Appl. 2, 143160.Google Scholar
15. Giacché, D. & Ishikawa, T. 2010 Hydrodynamic interaction of two unsteady model microorganisms. J. Theor. Biol. 267 (2), 252263.CrossRefGoogle ScholarPubMed
16. Guasto, J. S., Johnson, K. A. & Gollub, J. P. 2010 Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105 (18), 168102.Google Scholar
17. Hamel, A., Fisch, C., Combettes, L., Dupuis-Williams, P. & Baroud, C. N. 2011 Transitions between three swimming gaits in Paramecium escape. Proc. Natl Acad. Sci. USA 108, 72907295.CrossRefGoogle ScholarPubMed
18. Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.Google Scholar
19. Jakobsen, H. 2001 Escape response of planktonic protists to fluid mechanical signals. Mar. Ecol. Prog. Ser. 214, 6778.Google Scholar
20. Jiang, H. & Kiørboe, T. 2011 The fluid dynamics of swimming by jumping in copepods. J. R. Soc. Interface 8, 10901103.CrossRefGoogle ScholarPubMed
21. Lauga, E. 2011 Emergency cell swimming. Proc. Natl Acad. Sci. USA 108, 76557656.CrossRefGoogle ScholarPubMed
22. Lighthill, M. J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5, 109118.CrossRefGoogle Scholar
23. Lin, Z., Thiffeault, J. L. & Childress, S. 2011 Stirring by squirmers. J. Fluid Mech. 669, 167177.CrossRefGoogle Scholar
24. Lovalenti, P. M. & Brady, J. F. 1993 The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech. 256, 561605.Google Scholar
25. Magar, V. & Pedley, T. J. 2005 Average nutrient uptake by a self-propelled unsteady squirmer. J. Fluid Mech. 539, 93112.CrossRefGoogle Scholar
26. Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26 (4), 883889.Google Scholar
27. Mei, R. & Adrian, R. J. 1992 Flow past a sphere with an oscillation in the free stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323341.Google Scholar
28. Najafi, A. & Golestanian, R. 2004 Simple swimmer at low Reynolds number: three linked spheres. Phys. Rev. E 69 (6, Part 1), 062901.CrossRefGoogle ScholarPubMed
29. Oseen, C. W. 1927 Hydrodynamik, p. 132. Akademische Verlagsgesellschaft.Google Scholar
30. Pooley, C. M., Alexander, G. P. & Yeomans, J. M. 2007 Hydrodynamic interaction between two swimmers at low Reynolds number. Phys. Rev. Lett. 99 (22).CrossRefGoogle ScholarPubMed
31. Purcell, E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45, 311.Google Scholar
32. Stone, H. A. & Samuel, A. D. T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77 (19), 41024104.CrossRefGoogle ScholarPubMed
33. Zhu, L., Do-Quang, M., Lauga, E. & Brandt, L. 2011 Locomotion by tangential deformation in a polymeric fluid. Phys. Rev. E 83 (1), 011901.Google Scholar