Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T05:01:51.987Z Has data issue: false hasContentIssue false

Unsteady aspects of an incident shock wave/turbulent boundary layer interaction

Published online by Cambridge University Press:  10 September 2009

R. A. HUMBLE*
Affiliation:
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands
F. SCARANO
Affiliation:
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands
B. W. van OUDHEUSDEN
Affiliation:
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

An incident shock wave/turbulent boundary layer interaction at Mach 2.1 is investigated using particle image velocimetry in combination with data processing using the proper orthogonal decomposition, to obtain an instantaneous and statistical description of the unsteady flow organization. The global structure of the interaction is observed to vary considerably in time. Although reversed flow is often measured instantaneously, on average no reversed flow is observed. On an instantaneous basis, the interaction exhibits a multi-layered structure, characterized by a relatively high-velocity outer region and low-velocity inner region. Discrete vortical structures are prevalent along their interface, which create an intermittent fluid exchange as they propagate downstream. A statistical analysis suggests that the instantaneous fullness of the incoming boundary layer velocity profile is (weakly) correlated with the size of the separation bubble and position of the reflected shock wave. The eigenmodes show an energetic association between velocity fluctuations within the incoming boundary layer, separated flow region and across the reflected shock wave, and portray subspace features that represent the phenomenology observed within the instantaneous realizations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 442, 154.CrossRefGoogle Scholar
Andreopoulos, Y. & Muck, K. C. 1987 Some new aspects of the shock-wave/boundary-layer interaction in compression flows. J. Fluid Mech. 180, 405428.CrossRefGoogle Scholar
Aubry, N., Holmes, P., Lumley, J. P. & Stone, E. 1988 The dynamics of coherent structures in the wall region of the turbulent boundary layer. J. Fluid Mech. 192, 115173.CrossRefGoogle Scholar
Beresh, S. J., Clemens, N. T. & Dolling, D. S. 2002 Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40, 24122422.Google Scholar
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.CrossRefGoogle Scholar
Bernero, S. & Fiedler, H. E. 2000 Application of particle image velocimetry and proper orthogonal decomposition to the study of a jet in counterflow. Exp. Fluids 29, 274281.Google Scholar
Bookey, P., Wyckham, C. & Smits, A. J. 2005 Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions. Paper 2005-4899. AIAA.Google Scholar
Chong, M. S., Soria, J., Perry, A. E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 Turbulence structures of wall-bounded shear flows using DNS data. J. Fluid Mech. 357, 225247.CrossRefGoogle Scholar
Délery, J. & Marvin, J. G. 1986 Shock-wave boundary layer interactions. AGARDograph 280. AGARD.Google Scholar
Dolling, D. S. 2001 Fifty years of shock wave/boundary layer interaction research: what next? AIAA J. 39, 15171531.Google Scholar
Dolling, D. S. & Murphy, M. T. 1983 Unsteadiness of the separation shock wave structure in a supersonic compression ramp flow-field. AIAA J. 21, 16281634.CrossRefGoogle Scholar
Dupont, P., Haddad, C. & Debièeve, J. F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.CrossRefGoogle Scholar
Dupont, P., Piponniau, S., Sidorenko, A. & Debiève, J. F. 2008 Investigation by particle image velocimetry measurements of oblique shock reflection with separation. AIAA J. 46, 13651370.CrossRefGoogle Scholar
Dussauge, J.-P., Dupont, P. & Debiève, J. F. 2006 Unsteadiness in shock wave boundary layer interactions with separation. Aerosp. Sci. Technol. 10, 8591.Google Scholar
Eaton, J. K. & Johnston, J. P. 1982 Low-frequency unsteadiness of a reattaching turbulent shear layer. In Turbulent Shear Flows 3 (ed. Bradbury, L. J. S., Durst, F., Launder, B. E., Schmidt, F. W. & Whitelaw, J. H.), pp. 162170. Springer.CrossRefGoogle Scholar
Elena, M. & Lacharme, J. P. 1988 Experimental study of a supersonic turbulent boundary layer using a laser Doppler anemometer. J. Theoret. Appl. Mech. 7, 175190.Google Scholar
Erengil, M. E. & Dolling, D. S. 1993 Physical causes of separation shock unsteadiness in shock wave/turbulent boundary layer interactions. Paper 93-3134. AIAA.Google Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2006 Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech. 556, 271282.Google Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2007 Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.Google Scholar
Hou, Y. X. 2003 Particle image velocimetry study of shock-induced turbulent boundary layer separation. PhD dissertation, Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin.CrossRefGoogle Scholar
Humble, R. A., Elsinga, G. E., Scarano, F. & van Oudheusden, B. W. 2009 Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction. J. Fluid Mech. 622, 3362.CrossRefGoogle Scholar
Humble, R. A., Scarano, F. & van Oudheusden, B. W. 2007 Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Exp. Fluids 43, 173183.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. Report CTR-S88. Center for Turbulence Research.Google Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.CrossRefGoogle Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.Google Scholar
Kiya, M. & Sasaki, K. 1985 Structure of large-scale vortices and unsteady reverse flow in the reattaching zone of a turbulent separation bubble. J. Fluid Mech. 154, 463491.CrossRefGoogle Scholar
Kostas, J., Soria, J. & Chong, M. S. 2005 A comparison between snapshot POD analysis of PIV velocity and vorticity data. Exp. Fluids 38, 146160.CrossRefGoogle Scholar
Lumley, J. L. 1967 The structure of inhomogeneous turbulence. In Atmospheric Turbulence and Wave Propagation (ed. Yaglom, A. M. & Tatarski, V. I.), pp. 166178. Nauka.Google Scholar
Moreno, D., Krothapalli, A., Alkislar, M. B. & Lourenco, L. M. 2004 Low-dimensional model of a supersonic rectangular jet. Phys. Rev. E 69, 026304.CrossRefGoogle ScholarPubMed
Na, Y. & Moin, P. 1998 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379405.CrossRefGoogle Scholar
Patte-Rouland, B., Lalizel, G., Moreau, J. & Rouland, E. 2001 Flow analysis of an annular jet by particle image velocimetry and proper orthogonal decomposition. Meas. Sci. Technol. 12, 14041412.CrossRefGoogle Scholar
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25. Phys. Fluids 18, 065113.Google Scholar
Ringuette, M. J., Wu, M. & Martin, M. P. 2008 Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 5969.Google Scholar
Rowley, C. W., Colonius, T. & Murray, R. M. 2004 Model reduction for compressible flows using POD and Galerkin projection. Physica D 189, 115129.CrossRefGoogle Scholar
Samimy, M. & Lele, S. K. 1991 Motion of particles with inertia in a compressible free shear layer. Phys. Fluids 3, 19151923.CrossRefGoogle Scholar
Scarano, F. & Riethmuller, M. L. 2000 Advances in iterative multi-grid PIV processing. Exp. Fluids 29, S051.Google Scholar
Schrijer, F. F. J., Scarano, F. & vanOudheusden, B. W. Oudheusden, B. W. 2006 Application of PIV in a Mach 7 double-ramp flow. Exp. Fluids 41, 353363.Google Scholar
Simpson, R. L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21, 205234.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Quart. Appl. Math. 45, 561571.CrossRefGoogle Scholar
Smith, M. W. & Smits, A. J. 1995 Visualization of the structure of supersonic turbulent boundary layers. Exp. Fluids 18, 288302.CrossRefGoogle Scholar
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39, 10961100.Google Scholar
Wu, M. & Martin, M. P. 2008 Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 7183.Google Scholar