Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T22:04:44.783Z Has data issue: false hasContentIssue false

Unsteadily manipulating internal flow barriers

Published online by Cambridge University Press:  04 April 2017

Sanjeeva Balasuriya*
Affiliation:
School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005, Australia
*
Email address for correspondence: [email protected]

Abstract

Typical flows contain internal flow barriers: specialised time-moving Lagrangian entities which demarcate distinct motions. Examples include the boundary between an oceanic eddy and a nearby jet, the edge of the Antarctic circumpolar vortex or the interface between two fluids which are to be mixed together in an microfluidic assay. The ability to control the locations of these barriers in a user-specified time-varying (unsteady) way can profoundly impact fluid transport between the coherent structures which are separated by the barriers. A condition on the unsteady Eulerian velocity required to achieve this objective is explicitly derived, thereby solving an ‘inverse Lagrangian coherent structure’ problem. This is an important first step in developing flow-barrier control in realistic flows, and in providing a postprocessing tool for observational/experimental velocity data. The excellent accuracy of the method is demonstrated using the Kelvin–Stuart cats-eyes flow and the unsteady double gyre, utilising finite-time Lyapunov exponents.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allshouse, M. & Peacock, T. 2015a Lagrangian based methods for coherent structure detection. Chaos 25, 097617.CrossRefGoogle ScholarPubMed
Allshouse, M. & Peacock, T. 2015b Refining finite-time Lyapunov exponent ridges and the challenges of classifying them. Chaos 25, 087410.CrossRefGoogle Scholar
Allshouse, M. & Thiffeault, J.-L. 2012 Detecting coherent structures using braids. Physica D 241, 95105.Google Scholar
Balasuriya, S. 2011 A tangential displacement theory for locating perturbed saddles and their manifolds. SIAM J. Appl. Dyn. Syst. 10, 11001126.CrossRefGoogle Scholar
Balasuriya, S. 2012 Explicit invariant manifolds and specialised trajectories in a class of unsteady flows. Phys. Fluids 24, 12710.CrossRefGoogle Scholar
Balasuriya, S. 2015 Quantifying transport within a two-cell microdroplet induced by circular and sharp channel bends. Phys. Fluids 27, 052005.Google Scholar
Balasuriya, S. 2016a Barriers and Transport in Unsteady Flows: a Melnikov Approach. SIAM.Google Scholar
Balasuriya, S. 2016b Local stable and unstable manifolds and their control in nonautonomous finite-time flows. J. Nonlinear Sci. 26, 895927.CrossRefGoogle Scholar
Balasuriya, S. 2016c Meridional and zonal wavenumber dependence in tracer flux in Rossby waves. Fluids 1, 30.Google Scholar
Balasuriya, S. & Finn, M. D. 2012 Energy constrained transport maximization across a fluid interface. Phys. Rev. Lett. 108, 244503.Google Scholar
Balasuriya, S., Froyland, G. & Santitissadeekorn, N. 2014 Absolute flux optimising curves of flows on a surface. J. Math. Anal. Appl. 409, 119139.Google Scholar
Balasuriya, S., Kalampattel, R. & Ouellette, N. 2016 Hyperbolic neighborhoods as organizers of finite-time exponential stretching. J. Fluid Mech. 807, 509545.Google Scholar
Balasuriya, S. & Padberg-Gehle, K. 2013 Controlling the unsteady analogue of saddle stagnation points. SIAM J. Appl. Maths 73, 10381057.CrossRefGoogle Scholar
Balasuriya, S. & Padberg-Gehle, K. 2014a Accurate control of hyperbolic trajectories in any dimension. Phys. Rev. E 90, 032903.Google Scholar
Balasuriya, S. & Padberg-Gehle, K. 2014b Nonautonomous control of stable and unstable manifolds in two-dimensional flows. Physica D 276, 4860.Google Scholar
Beebe, D., Moore, J., Bauer, J., Yu, Q., Liu, R., Davadoss, C. & Jo, B. 2000 Functional hydrogel structures for autonomous flow control inside microfluidic channnels. Nature 404, 588.Google Scholar
Blazevski, D. & Haller, G. 2014 Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows. Physica D 273, 4662.Google Scholar
Boccaletti, S., Grebogi, C., Lai, Y. C., Mancini, H. & Maza, D. 2000 The control of chaos: theory and applications. Phys. Rep. 329, 103197.Google Scholar
Boujo, E., Fani, A. & Gallaire, F. 2015 Second-order sensitivity of parallel shear flows and optimal spanwise-periodic flow modifications. J. Fluid Mech. 782, 491514.Google Scholar
BozorgMagham, A., Ross, S. & Schmale, D. 2015 Local finite-time Lyapunov exponent, local sampling and probabilistic source and destination regions. Nonlinear Process. Geophys. 22, 663677.Google Scholar
Brunton, S. & Noack, B. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67, 050801.Google Scholar
Budišić, M., Siegmund, S., Doan, T. & Mezić, I. 2016 Mesochronic classification of trajectories in incompressible 3D vector fields over finite time. Discrete Continuous Dyn. Syst. S 9, 923958.CrossRefGoogle Scholar
Budis̆ić, M. & Thiffeault, J.-L. 2015 Finite-time braiding exponents. J. Nonlinear Sci. 25, 087407.Google Scholar
Cheikh, M. & Lakkis, I. 2016 Microfluidic transistors for analog microflows amplification and control. Microfluid Nanofluid 20, 91.Google Scholar
Coppel, W. A. 1978 Dichotomies in Stability Theory, Lecture Notes Mathematics, vol. 629. Springer.CrossRefGoogle Scholar
Cortelezzi, L., Adrover, A. & Giona, M. 2008 Feasibility, efficiency and transportability of short-horizon optimal mixing protocols. J. Fluid Mech. 597, 199231.Google Scholar
Fish, F. & Lauder, G. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38, 193224.Google Scholar
Franco, E., Pekarek, D., Peng, J. & Dabiri, J. 2007 Geometry of unsteady fluid transport during fluid structure interactions. J. Fluid Mech. 589, 125145.Google Scholar
Frank, P., Schreiter, J., Haefner, S., Paschew, G, Voigt, A. & Richter, A. 2016 Integrated microfluidic membrane transistor utilizing chemical information for on-chip flow control. PLoS ONE 11, e0161024.CrossRefGoogle ScholarPubMed
Froyland, G. 2013 An analytical framework for identifying finite-time coherent sets in time-dependent dynamical systems. Physica D 250, 119.Google Scholar
Froyland, G. & Padberg, K. 2009 Almost-invariant sets and invariant manifolds – connecting probabilistic and geometric descriptions of coherent structures in flows. Physica D 238, 15071523.Google Scholar
Froyland, G. & Padberg-Gehle, K. 2014 Almost-invariant and finite-time coherent sets: directionality, duration, and diffusion. In Ergodic Theory, Open Dynamics, and Coherent Structures (ed. Bahsoun, W., Bose, C. & Froyland, G.), pp. 171216. Springer.Google Scholar
Froyland, G. & Padberg-Gehle, K. 2015 A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data. Chaos 25, 087406.CrossRefGoogle ScholarPubMed
Froyland, G., Santitissadeekorn, N. & Monahan, A. 2010 Transport in time-dependent dynamical systems: finite-time coherent sets. Chaos 20, 043116.Google Scholar
Gaultier, L., Djath, B., Verron, J., Brankart, J. M., Brasseur, P. & Melet, A. 2014 Inversion of submesoscale patterns from a high-resolution Solomon sea model: feasibility assessment. J. Geophys. Res. Oceans 119, 45204541.Google Scholar
Gaultier, L., Verron, J., Brankart, J.-M., Titaud, O. & Brasseur, P. 2013 On the inversion of submesoscale tracer fields to estimate the surface ocean circulation. J. Mar. Syst. 126, 3342.Google Scholar
Glass, O. & Horsin, T. 2010 Approximate Lagrangian controllability for the 2D Euler quations: application to the control of the shape of a vortex patch. J. Math. Pures Appl. 93, 6190.Google Scholar
Glass, O. & Horsin, T. 2012 Prescribing the motion of a set of particles in a three-dimensional perfect fluid. SIAM J. Control Optim. 50, 27262742.Google Scholar
Hadjighasem, A., Karrasch, D., Teramoto, H. & Haller, G. 2016 Spectral clustering approach to Lagrangian vortex detection. Phys. Rev. E 93, 063107.Google Scholar
Haller, G. 2011 A variational theory of hyperbolic Lagrangian coherent structures. Physica D 240, 574598.Google Scholar
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.Google Scholar
Haller, G. & Beron-Vera, F. 2012 Geodesic theory for transport barriers in two-dimensional flows. Physica D 241, 16801702.Google Scholar
Haller, G., Hadjighasem, A., Farazmand, M. & Hihn, F. 2016 Defining coherent vortices objectively from the vorticity. J. Fluid Mech. 795, 136173.Google Scholar
Haller, G. & Yuan, G.-C. 2000 Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352370.Google Scholar
Hassanzadeh, P., Chini, G. & Doering, C. 2014 Wall to wall optimal transport. J. Fluid Mech. 751, 627662.Google Scholar
Heckman, C., Schwartz, I. & Hsieh, M. 2015 Toward efficient navigation in uncertain gyre-like flows. Intl J. Robot. Res. 34, 15901603.CrossRefGoogle Scholar
Ho, C. & Tai, Y. 1998 Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30, 579612.Google Scholar
Ionov, L., Houbenov, N., Sidorenko, A., Stamm, M. & Minko, S. 2006 Smart microfluidic channels. Adv. Funct. Mater. 16, 11531160.Google Scholar
Jadhav, A., Yan, B., Luo, R., Wei, L., Zhen, Z., Chen, C. & Shi, P. 2015 Photoresponsive microvalve for remote actuation and flow control in microfluidic devices. Biomicrofluidics 9, 034114.Google Scholar
Jeong, S.-G., Kim, J., Jin, S., Park, K. & Lee, C. 2016 Flow control in paper-based microfluidic device for automatic multistep assays: a focused review. Korean J. Chem. Engng 33, 27612770.CrossRefGoogle Scholar
Karnik, R., Duan, C., Castelino, K., Daiguji, H. & Majumdar, A. 2007 Rectification of ionic current in a nanofluidic device. Nano Lett. 7, 547551.Google Scholar
Karrasch, D., Farazmand, M. & Haller, G. 2015 Attraction-based computation of hyperbolic Larangian coherent structures. J. Comput. Dyn. 2, 8393.Google Scholar
Kim, J. & Bewley, T. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.Google Scholar
Kucala, A. & Biringen, S. 2014 Spatial simulation of channel flow instability and control. J. Fluid Mech. 738, 105123.Google Scholar
Lei, P., Zhang, J., Li, K. & Wei, D. 2015 Study on the transports in transient flow over impulsively started circular cylinder using Lagrangian coherent structures. Commun. Nonlinear Sci. Numer. Simul. 22, 953963.Google Scholar
Lin, Z., Thiffeault, J.-L. & Doering, C. R. 2011 Optimal stirring strategies for passive scalar mixing. J. Fluid Mech. 675, 465476.Google Scholar
Ma, T. & Bollt, E. 2014 Differential geometry perspective of shape coherence and curvature evolution by finite-time nonhyperbolic splitting. SIAM J. Appl. Dyn. Syst. 13, 11061136.Google Scholar
Mallory, K., Hsieh, M., Forgoston, E. & Schwartz, I. 2013 Distributed allocation of mobile sensing swarms in gyre flows. Nonlinear Process. Geophys. 20, 657668.Google Scholar
Mancho, A. M., Wiggins, S., Curbelo, J. & Mendoza, C. 2013 Lagrangian descriptors: a method for revealing phase space structures of general time dependent dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 18, 35303557.Google Scholar
Mathew, G., Mezić, I., Grivopoulos, S., Vaidya, U. & Petzold, L. 2007 Optimal control of mixing in Stokes fluid flow. J. Fluid Mech. 580, 261281.Google Scholar
Mezić, I., Loire, S., Fonoberov, V. & Hogan, P. 2010 A new mixing diagnostic and Gulf oil spill movement. Science 330, 486489.Google Scholar
Michini, M., Hsieh, M., Forgoston, E. & Schwartz, I. 2014 Robotic tracking of coherent structures in flows. IEEE Trans. Robot. 30, 595603.Google Scholar
Mundel, R., Fredj, E., Gildor, H. & Rom-Kedar, V. 2014 New Lagrangian diagnostics for characterizing fluid flow mixing. Phys. Fluids 26, 126602.Google Scholar
Oettinger, D. & Haller, G. 2016 An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows. Chaos 26, 103111.Google Scholar
Onu, K., Huhn, F. & Haller, G. 2015 LCS tool: a computational platform for Lagrangian coherent structures. J. Comput. Sci. 7, 2636.Google Scholar
Ott, E., Grebogi, C. & Yorke, J. A. 1990 Controlling chaos. Phys. Rev. Lett. 64, 11961199.Google Scholar
Ouellette, N., Hogg, C. & Liao, Y. 2016 Correlating Lagrangian structures with forcing in two-dimensional flow. Phys. Fluids 28, 015105.Google Scholar
Park, Y., Cho, K., Kang, J. H., Lee, S. & Kim, J. 2014 Developing a flow control strategy to reduce nutrient load in a reclaimed multi-reservoir system using a 2D hydrodynamic and water quality model. Sci. Total Environ. 466–467, 871880.Google Scholar
Peacock, T. & Haller, G. 2013 Lagrangian coherent structures: the hidden skeleton of fluid flow. Phys. Today 66, 4147.Google Scholar
Pyragas, K. 1992 Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170 (6), 421428.Google Scholar
Raben, S., Ross, S. & Vlachos, P. 2014 Experimental determination of three dimensional finite time Lyapunov exponents in multi-component flows. Exp. Fluids 55, 1824.Google Scholar
Rom-Kedar, V., Leonard, A. & Wiggins, S. 1990 An analytical study of transport, mixing and chaos in an unsteady vortical flow. J. Fluid Mech. 214, 347394.Google Scholar
Samelson, R. 2013 Lagrangian motion, coherent structures, and lines of persistent material strain. Annu. Rev. Mar. Sci. 5, 137163.Google Scholar
Sandstede, B., Balasuriya, S., Jones, C. K. R. T. & Miller, P. D. 2000 Melnikov theory for finite-time vector fields. Nonlinearity 13, 13571377.Google Scholar
Sattarzadeh, S. & Fransson, J. 2016 Mastering nonlinear flow dynamics for laminar flow control. Phys. Rev. E 94, 021103.Google Scholar
Schlueter-Kuck, K. & Dabiri, J. 2017 Coherent structure coloring: identification of coherent structures from sparse data using graph theory. J. Fluid Mech. 811, 468486.Google Scholar
Senatore, C. & Ross, S. 2008 Fuel-efficient navigation in complex flows. In Proceedings of 2008 American Control Conference, pp. 12441248; doi:10.1109/ACC.2008.4586663.Google Scholar
Shadden, S. 2011 Lagrangian coherent structures. In Transport and Mixing in Laminar Flows: From Microfluidics to Ocean Currents (ed. Grigoriev, R.), Wiley.Google Scholar
Shadden, S. C., Lekien, F. & Marsden, J. E. 2005 Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271304.Google Scholar
Sharma, A. & McKeon, B. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.Google Scholar
Sinha, S., Vaidya, U. & Rajaram, R. 2016 Operator theoretic framework for optimal placement of sensors and actuators for control of nonequilibrium dynamics. J. Math. Anal. Appl. 440, 750772.Google Scholar
Stuart, J. 1967 On finite-amplitude oscillations in laminar mixing layers. J. Fluid Mech. 29, 417440.Google Scholar
Tallapragada, P. & Ross, S. 2013 A set oriented definition of finite-time Lyapunov exponents and coherent sets. Commun. Nonlinear Sci. Numer. Simul. 18, 11061126.Google Scholar
Tamaseviciute, E., Maikolaitis, G., Bumeliene, S. & Tamaseviciute, A. 2013 Stabilizing saddles. Phys. Rev. E 88, 060901(R).Google Scholar
Tounsi, N., Mestiri, R., Keirsbulck, L., Oualli, H., Hanchi, S. & Aloui, F. 2016 Experimental study of flow control on bluff body using piezoelectric actuators. J. Appl. Fluid. Mech. 9, 827838.Google Scholar
Wiggins, S. 1992 Chaotic Transport in Dynamical Systems. Springer.Google Scholar
Wolfram Research Inc. 2012 Mathematica, version 9.0 edn. Champaign.Google Scholar