Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T22:15:22.394Z Has data issue: false hasContentIssue false

Unstable transition properties of the driven magnetohydrodynamic sheet pinch

Published online by Cambridge University Press:  21 April 2006

R. B. Dahlburg
Affiliation:
Department of Physics, College of William and Mary, Williamsburg, VA 23185 Present address: Laboratory for Computational Physics, Naval Research Laboratory, Washington DC 20375.
T. A. Zang
Affiliation:
NASA Langley Research Center, Hampton, VA 23665
D. Montgomery
Affiliation:
Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755

Abstract

The unstable transition behaviour of a bounded, current-carrying, two-dimensional magnetofluid is explored, using the hydrodynamic theory developed for parallel shear flows as a guide. The time development of a perturbed driven magnetohydrodynamic sheet pinch is simulated numerically. The nonlinear partial differential equations of two-dimensional, incompressible, viscoresistive magnetohydrodynamics are advanced in time numerically by means of a semi-implicit, mixed Fourier collocation-finite difference algorithm. Nonlinear excitation of the higher wavenumbers results in the development of electric current sheets of finite extent, as well as the formation of ‘attraction currents’ centred at the magnetic O-points. A secondary instability mechanism, the dynamic tearing of the electric current sheet, is also observed. This dynamic tearing leads to sawtooth-like temporal oscillations in certain global quantities. The long time state of the system resembles a nonlinearly saturated state with significant excitation of many wavenumbers. Some features of this state can be understood by means of a Landau nonlinear stability theory based on certain assumptions about the perturbation energy balance.

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bateman, G. 1978 MHD Instabilities. The MIT Press.
Biskamp, D. 1984 Phys. Lett. A 105, 124.
Bondeson, A. & Sobel, J. R. 1984 Phys. Fluids 27, 2028.
Braginskii, S. I. 1965 Transport processes in a plasma. In Reviews of Plasma Physics vol. 1. Consultants Bureau.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.
Dahlburg, R. B., Zang, T. A., Montgomery, D. & Hussaini, M. Y. 1983 Proc. Nat. Acad. Sci. 80, 5798.
Dahlburg, R. B. 1985 Stability and transition of the driven magnetohydrodynamic sheet pinch. Ph.D. dissertation, College of William and Mary, Williamsburg, VA.
Dungey, J. W. 1958 Cosmic Electrodynamics. Cambridge University Press.
Forbes, T. G. & Priest, E. R. 1983 Solar Phys. 84, 169.
Furth, H., Killeen, J. & Rosenbluth, M. N. 1963 Phys. Fluids 6, 459.
Fyfe, D., Montgomery, D. & Joyce, G. 1977 J. Plasma Phys. 17, 369.
Gekelman, W. & Stenzel, R. L. 1981 J. Geophys. Res. 86, 659.
Gekelman, W., Stenzel, R. L. & Wild, N. 1982 J. Geophys. Res. 87, 101.
Gottlieb, D. & Orszag, S. A. 1977 Numerical analysis of spectral methods: theory and applications. NSF-CBMS mon. no. 26, Soc. Ind. App. Math., Philadelphia.
Harlow, F. H. & Welch, J. E. 1965 Phys. Fluids 8, 2182.
Herbert, T. 1983 J. Fluid Mech. 126, 167.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.
Manheimer, W. M. & Lashmore-Davies, C. 1984 MHD instabilities in simple plasma configuration. Naval Research Laboratory, Washington DC.
Matthaeus, W. H. & Montgomery, D. 1981 J. Plasma Phys. 25, 11.
Matthaeus, W. H. 1982 Geophys. Res. Lett. 9, 660.
Matthaeus, W. H. & Lamkin, S. L. 1985 Phys. Fluids 28, 303.
Moin, P. & Kim, J. 1982 J. Fluid Mech. 118, 341.
Montgomery, D. 1984 Applications of spectral methods to turbulent magnetofluids in space and fusion research. In Spectral Methods for Partial Differential Equations (eds. R. G. Voight, D. Gottlieb & M. Y. Hussaini). Soc. Ind. App. Math., Philadelphia.
Orszag, S. A. 1971 J. Fluid Mech. 50, 689.
Orszag, S. A. & Tang, C.-M. 1979 J. Fluid Mech. 90, 129.
Pao, Y. P., Rosenau, P. & Guo, S. C. 1983 Commun. Pure Appl. Maths 36, 615.
Pouquet, A. 1978 J. Fluid Mech. 88, 1.
Rutherford, P. H. 1973 Phys. Fluids 16, 1903.
Schnack, D. & Killeen, J. 1979 Nucl. Fusion 19, 877.
Schnack, D. & Killeen, J. 1980 J. Comp. Phys. 25, 110.
Sonnerup, B. U. O. 1979 In Solar System Plasma Physics (eds. L. Lanzerotti, C. Kennel & E. N. Parker), vol. 3. North Holland.
Soward, A. M. & Priest, E. R. 1977 Phil. Trans. R. Soc. Lond. 284, 369.
Stenzel, R. L. & Gekelman, W. 1981 J. Geophys. Res. 86, 649.
Stenzel, R. L., Gekelman, W. & Wild, N. 1982 J. Geophys. Res. 87, 111.
Stenzel, R. L., Gekelman, W. & Wild, N. 1983 J. Geophys. Res. 88, 4793.
Stuart, J. T. 1958 J. Fluid Mech. 4, 1.
Syrovatskii, S. I. 1979 Izv. Akad. Nauk SSSR, Ser. Fiz. 43, 695.
Vasyliunas, V. M. 1975 Rev. Geophys. Space Phys. 13, 303.
Waddell, B. V., Rosenbluth, M. N., Monticello, D. A. & White, R. B. 1976 Nucl. Fusion 16, 528.
Wesson, J. 1966 Nucl. Fusion 6, 130.
White, R. B., Monticello, D. A., Rosenbluth, M. N. & Waddell, B. V. 1977 Phys. Fluids 20, 800.
White, R. B. 1983 Resistive instabilities and field line reconnection. In Handbook of Plasma Physics 1 (eds. A. N. Galeev & R. N. Sudan). North Holland.
Wild, N., Gekelman, W. & Stenzel, R. L. 1981 Phys. Rev. Lett. 46, 339.