Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T11:17:45.221Z Has data issue: false hasContentIssue false

Universal similarity at high grid Reynolds numbers

Published online by Cambridge University Press:  29 March 2006

J. Schedvin
Affiliation:
Department of Applied Mechanics and Engineering Sciences, University of California, La Jolla
G. R. Stegen
Affiliation:
Department of Geological and Geophysical Sciences, Princeton University, Princeton, New Jersey 08540
C. H. Gibson
Affiliation:
Department of Applied Mechanics and Engineering Sciences, University of California, La Jolla

Abstract

Kolmogorov's second hypothesis has been examined for the case of turbulence generated behind a very large grid. The turbulent Reynolds number RΛ = 280 was sufficient to obtain a short inertial subrange. The one-dimensional subrange constant a1 = 0·48 ± 0·06 is in agreement with recent determinations made in geophysical flows. Isotropy was tested by comparing the transverse velocity spectrum with the transverse spectrum predicted from the longitudinal spectrum using the isotropic relations. The comparison showed the flow to be isotropic everywhere except at the largest scales.

It was observed that at high wavenumbers the spectra were attenuated by effects of finite wire length. The wire-length corrections suggested by Wyngaard (1968) were found to be inadequate. New corrections based on experimentally determined universal spectra are proposed.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradshaw, P. 1967 Nat. Phys. Lab. Aero. Rep. no. 1220.
Cermak, J. E. 1971 A.I.A.A. J. 9, 1746.
Champagne, F. H. 1973 Bull. Am. Phys. Soc. II, 18, 1468.
Comte-Bellot, G. & Corrsin, S. 1966 J. Fluid Mech. 25, 657.
Comte-Bellot, G. & Corrsin, S. 1971 J. Fluid Mech. 48, 273.
Corrsin, S. 1958 N.A.C.A. Rep. RM58B11.
Friehe, C. A. & Schwarz, W. H. 1970 J. Fluid Mech. 44, 173.
Gibson, C. H., Stegen, G. R. & McConnell, S. 1970 Phys. Fluids, 13, 2448.
Gibson, C. H., Stegen, G. R. & Williams, R. B. 1970 J. Fluid Mech. 41, 153.
Grant, H. L., Stewart, R. W. & Moilliet, A. 1962 J. Fluid Mech. 12, 241.
Kistler, A. L. & Vrebalovich, J. 1966 J. Fluid Mech. 26, 37.
Kolmogorov, A. N. 1962 J. Fluid Mech. 13, 82.
Lumley, J. L. 1965 Phys. Fluids, 8, 1056.
McBean, G. A., Stewart, R. W. & Miyake, M. 1971 J. Geophys. Res. 76, 6540.
Nasmyth, P. W. 1970 Dissertation, University of British Columbia.
Pao, Y. H. 1965 Phys. Fluids, 8, 1063.
Paquin, J. E. & Pond, S. 1971 J. Fluid Mech. 50, 257.
Pond, S., Phelps, G. T., Paquin, J. E., McBean, G. & Stewart, R. W. 1971 J. Atmos. Sci. 28, 901.
Pond, S., Smith, S. D., Hamblin, P. F. & Burling, R. W. 1966 J. Atmos. Sci. 23, 376.
Pond, S., Stewart, R. W. & Burling, R. W. 1963 J. Atmos. Sci. 20, 319.
Stewart, R. W. & Townsend, A. A. 1951 Phil. Trans. A, 243, 359.
Wyngaard, J. 1968 J. Sci. Instrum. 1(2), 1105.