Hostname: page-component-5cf477f64f-h6p2m Total loading time: 0 Render date: 2025-03-31T04:42:41.112Z Has data issue: false hasContentIssue false

Unified limit-cycle amplitude prediction and symmetry-breaking analysis of combustion instabilities

Published online by Cambridge University Press:  17 March 2025

V. Latour*
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3, rue Joliot Curie, 91192 Gif-sur-Yvette cedex, France
D. Durox
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3, rue Joliot Curie, 91192 Gif-sur-Yvette cedex, France
A. Renaud
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3, rue Joliot Curie, 91192 Gif-sur-Yvette cedex, France
S. Candel
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3, rue Joliot Curie, 91192 Gif-sur-Yvette cedex, France
*
Corresponding author: V. Latour, [email protected]

Abstract

Combustion instability analysis in annular systems often relies on reduced-order models that represent the complexity of combustion dynamics in a framework in which the flame is represented by a ‘flame describing function’ (FDF), portraying its heat release rate response to acoustic disturbances. However, in most cases, FDFs are only available for a limited range of disturbance amplitudes, complicating the description of the saturation process at high oscillation levels leading to the establishment of a limit cycle. This article shows that this difficulty may be overcome using a novel experimental scheme, relying on injector staging and in which the oscillation amplitude at limit cycle can be controlled, enabling us to measure FDFs from simultaneous pressure and heat release rate recordings. These data are then exploited to replace the standard modelling, in which the heat release rate is expressed as a third-order polynomial of pressure fluctuations, by a function of the modulation amplitude, allowing an easier adaptation to experimental data. The FDF is then used in a dynamical framework to analyse a set of staging configurations in an annular combustor, where two families of injectors are mixed and form different patterns. The limit-cycle amplitudes and the coupling modes observed experimentally are suitably retrieved. Finally, an expression for the growth rate is derived from the slow-flow variable equations defining the modal amplitudes and phase functions, which is shown to exactly agree with that obtained previously by using acoustic energy principles, providing a theoretical link between growth rates and limit-cycle amplitudes.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alhaffar, A., Latour, V., Patat, C., Durox, D., Renaud, A., Blaisot, J.-B., Candel, S. & Baillot, F. 2024 Comparison of pressure-based flame describing functions measured in an annular combustor under self-sustained oscillations and in an externally modulated linear combustor. Proc. Combust. Inst. 40 (1-4), 105249.CrossRefGoogle Scholar
Balachandran, R., Ayoola, B.O., Kaminski, C.F., Dowling, A.P. & Mastorakos, E. 2005 Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 143 (1-2), 3755.CrossRefGoogle Scholar
Bauerheim, M., Cazalens, M. & Poinsot, T. 2015 A theoretical study of mean azimuthal flow and symmetry effects on thermo-acoustic modes in annular combustors. Proc. Combust. Inst. 346, 271290.Google Scholar
Bonciolini, G., Faure-Beaulieu, A., Bourquard, C. & Noiray, N. 2021 Low order modelling of thermoacoustic instabilities and intermittency: flame response delay and nonlinearity. Combust. Flame 226, 396411.CrossRefGoogle Scholar
Boujo, E., Denisov, A., Schuermans, B. & Noiray, N. 2016 Quantifying acoustic damping using flame chemiluminescence. J. Fluid Mech. 808, 245257.CrossRefGoogle Scholar
Bourgouin, J.-F., Durox, D., Moeck, J.P., Schuller, T. & Candel, S. 2013 Self-sustained instabilities in an annular combustor coupled by azimuthal and longitudinal acoustic modes. In Proceeding of ASME Turbo Expo 2013, GT2013-95010. ASME.CrossRefGoogle Scholar
Cole, J.D. 1968 Perturbation Methods in Applied Mathematics. Blaisdell.Google Scholar
Ćosić, B., Reichel, T. & Paschereit, C. 2012 Acoustic response of a Helmholtz resonator exposed to hot-gas penetration and high amplitude oscillations. Trans. ASME: J. Engng Gas Turbines Power 134 (10), 101503.Google Scholar
Culick, F. 1994 Some recent results for nonlinear acoustics in combustion chambers. AIAA J. 32 (1), 146169.CrossRefGoogle Scholar
Dowling, A.P. 1997 Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346, 271290.CrossRefGoogle Scholar
Durox, D., Schuller, T., Noiray, N., Birbaud, A.L. & Candel, S. 2009 Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames. Combust. Flame 156 (1), 106119.CrossRefGoogle Scholar
Faure-Beaulieu, A., Indlekofer, T., Dawson, JR. & Noiray, N. 2021 Experiments and low-order modelling of intermittent transitions between clockwise and anticlockwise spinning thermoacoustic modes in annular combustors. Proc. Combust. Inst. 38 (4), 59435951.CrossRefGoogle Scholar
Faure-Beaulieu, A. & Noiray, N. 2020 Symmetry breaking of azimuthal waves: slow-flow dynamics on the Bloch sphere. Phys. Rev. Fluids 5 (2), 023201.CrossRefGoogle Scholar
Faure-Beaulieu, A., Pedergnana, T. & Noiray, N. 2023 Self-sustained azimuthal aeroacoustic modes. Part 2. Effect of swirling mean flow on the modal dynamics. J. Fluid Mech. 971, A22.CrossRefGoogle Scholar
Ghirardo, G. & Bothien, M.R. 2018 Quaternion structure of azimuthal instabilities. Phys. Rev. Fluids 3 (11), 113202.CrossRefGoogle Scholar
Ghirardo, G., Boudy, F. & Bothien, M.R. 2018 Amplitude statistics prediction in thermoacoustics. J. Fluid Mech. 844, 216246.CrossRefGoogle Scholar
Ghirardo, G., Ćosić, B., Juniper, M.P. & Moeck, J.P. 2015 State-space realization of a describing function. Nonlinear Dyn. 82 (1-2), 928.CrossRefGoogle Scholar
Ghirardo, G., Juniper, M. & Bothien, M.R. 2018 The effect of the flame phase on thermoacoustic instabilities. Combust. Flame 187, 165184.CrossRefGoogle Scholar
Ghirardo, G. & Juniper, M.P. 2013 Azimuthal instabilities in annular combustors: standing and spinning modes. Proc. R. Soc. Lond. A 469 (2157), 20130232.Google Scholar
Ghirardo, G., Juniper, M.P. & Moeck, J.P. 2016 Weakly nonlinear analysis of thermoacoustic instabilities in annular combustors. J. Fluid Mech. 805, 5287.CrossRefGoogle Scholar
Ghirardo, G., Nygård, H.T., Cuquel, A. & Worth, N.A. 2021 Symmetry breaking modelling for azimuthal combustion dynamics. Proc. Combust. Inst. 38 (4), 59535962.CrossRefGoogle Scholar
Haeringer, M., Merk, M. & Polifke, W. 2019 Inclusion of higher harmonics in the flame describing function for predicting limit-cycles of self-excited combustion instabilities. Proc. Combust. Inst. 37 (4), 52555262.CrossRefGoogle Scholar
Indlekofer, T., Faure-Beaulieu, A., Dawson, JR. & Noiray, N. 2022 Spontaneous and explicit symmetry breaking of thermoacoustic eigenmodes in imperfect annular geometries. J. Fluid Mech. 944, A15.CrossRefGoogle Scholar
Kashinath, K., Waugh, I. & Juniper, M. 2014 Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. J. Fluid Mech. 761, 399430.CrossRefGoogle Scholar
Krylov, N. & Bogoliubov, N. 1950 Introduction to Nonlinear Mechanics. Princeton University Press.Google Scholar
Laera, D., Prieur, K., Durox, D., Schuller, T., Camporeale, S.M. & Candel, S. 2017 Impact of heat release distribution on the spinning modes of an annular combustor with multiple matrix burners. Trans. ASME: J. Engng Gas Turbines Power 139 (5), 51505.Google Scholar
Latour, V., Durox, D., Renaud, A. & Candel, S. 2024 a Experiments on symmetry breaking of azimuthal combustion instabilitis and their analysis combining acoustic energy balance and flame describing functions. J. Fluid Mech. 985, A31.CrossRefGoogle Scholar
Latour, V., Durox, D., Renaud, A. & Candel, S. 2024 b Experimental and theoretical estimation of acoustic energy source terms and instability growth rates in an annular combustor. Proc. Combust. Inst. 40 (1-4), 105204.CrossRefGoogle Scholar
Lieuwen, T. 2003 Modeling premixed combustion-acoustic wave interactions: a review. J. Propul. Power 19 (5), 765781.CrossRefGoogle Scholar
Moeck, J., Durox, D., Schuller, T. & Candel, S. 2019 Nonlinear thermoacoustic mode synchronization in annular combustors. Proc. Combust. Inst. 37 (4), 53435350.CrossRefGoogle Scholar
Moeck, J. & Paschereit, O. 2012 Nonlinear interactions of multiple linearly unstable thermoacoustic modes. Int. J. Spray Combust. 4 (1), 128.CrossRefGoogle Scholar
Nayfeh, A.H. & Mook, D.T. 1979 Nonlinear Oscillations. Wiley.Google Scholar
Nicoud, F., Benoit, L., Sensiau, C. & Poinsot, T. 2007 Acoustic modes in combustors with complex impedances and multidimensional active flames. AIAA J. 45 (2), 426441.CrossRefGoogle Scholar
Noiray, N., Bothien, M. & Schuermans, B. 2011 Investigation of azimuthal staging concepts in annular gas turbines. Combust. Theor. Model. 15 (5), 585606.CrossRefGoogle Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139167.CrossRefGoogle Scholar
Noiray, N. & Schuermans, B. 2013 On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers. Proc. R. Soc. Lond. A 469 (2151), 20120535.Google Scholar
Nygård, H.T., Ghirardo, G. & Worth, N.A. 2021 Azimuthal flame response and symmetry breaking in a forced annular combustor. Combust. Flame 233, 111565.CrossRefGoogle Scholar
Nygård, H.T., Ghirardo, G. & Worth, N.A. 2023 Saturation of flames to multiple inputs at one frequency. J. Fluid Mech. 977, A6.CrossRefGoogle Scholar
Nygård, H.T., Mazur, M., Dawson, J.R. & Worth, N.A. 2019 Flame dynamics of azimuthal forced spinning and standing modes in an annular combustor. Proc. Combust. Inst. 37 (4), 51135120.CrossRefGoogle Scholar
O.’Connor, J., Acharya, V. & Lieuwen, T. 2015 Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes. Prog. Energy Combust. Sci. 49, 139.CrossRefGoogle Scholar
Orchini, A. & Juniper, M.P. 2016 Flame double input describing function analysis. Combust. Flame 171, 87102.CrossRefGoogle Scholar
Orchini, A., Mensah, G. & Moeck, J. 2019 Effects of nonlinear modal interactions on the thermoacoustic stability of annular combustors. Trans. ASME: J. Engng Gas Turbines Power 141 (2), 021002.Google Scholar
Orchini, A. & Moeck, J. 2024 Weakly nonlinear analysis of thermoacoustic oscillations in can-annular combustors. J. Fluid Mech. 980, A52.CrossRefGoogle Scholar
Paliès, P., Durox, D., Schuller, T. & Candel, S. 2011 Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames. Combust. Flame 158 (10), 19801991.CrossRefGoogle Scholar
Poinsot, T. 2017 Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36 (1), 128.CrossRefGoogle Scholar
Prieur, K., Durox, D., Schuller, T. & Candel, S. 2018 Strong azimuthal combustion instabilities in a spray annular chamber with intermittent partial blow-off. Trans. ASME: J. Engng Gas Turbines Power 140 (3), 31503.Google Scholar
Rajendram Soundararajan, P., Durox, D., Renaud, A. & Candel, S. 2022 Azimuthal instabililities of an annular combustor with different swirling injectors. Trans. ASME: J. Engng Gas Turbines Power 144 (11), 111018.Google Scholar
Rajendram Soundararajan, P., Durox, D., Renaud, A., Vignat, G. & Candel, S. 2022 Swirler effects on combustion instabilities analyzed with measured FDFs, injector impedances and damping rates. Combust. Flame 238, 111947.CrossRefGoogle Scholar
Schuller, T., Marragou, S., Oztarlik, G., Poinsot, T. & Selle, L. 2022 Influence of hydrogen content and injection scheme on the describing function of swirled flames. Combust. Flame 240, 111974.CrossRefGoogle Scholar
Schuller, T., Poinsot, T. & Candel, S. 2020 Dynamics and control of premixed combustion systems based on flame transfer and describing functions. J. Fluid Mech. 894, P1.CrossRefGoogle Scholar
Schuller, T., Tran, N., Noiray, N., Durox, D., Ducruix, S. & Candel, S. 2009 The role of nonlinear acoustic boundary conditions in combustion/acoustic coupled instabilities. In Proceedings of ASME Turbo Expo 2009 GT2009-59390. ASME.CrossRefGoogle Scholar
Sirignano, W. & Krieg, J. 2016 Two-time-variable perturbation theory for liquid-rocket combustion instability. J. Propul. Power 32 (3), 755776.CrossRefGoogle Scholar
Stow, S. & Dowling, A. 2009 A time-domain network model for nonlinear thermoacoustic oscillations. Trans. ASME: J. Engng Gas Turbines Power 131 (3), 031502.Google Scholar
Verhulst, F. 1996 Nonlinear Differential Equations and Dynamical Systems. Springer.CrossRefGoogle Scholar
Vignat, G. 2020 Injection and combustion dynamics in swirled spray flames and azimuthal coupling in annular combustors. PhD thesis, Université Paris-Saclay, France.Google Scholar
Vignat, G., Rajendram Soundararajan, P., Durox, D., Vié, A., Renaud, A. & Candel, S. 2021 A joint experimental and large Eddy simulation characterization of the liquid fuel spray in a swirl injector. Trans. ASME: J. Engng Gas Turbines Power 143 (8), 081019.Google Scholar
Wiseman, S., Gruber, A. & Dawson, J. 2023 Flame transfer functions for turbulent, premixed, ammonia-hydrogen-nitrogen-air flames. Trans. ASME: J. Engng Gas Turbines Power 145 (3), 031015.Google Scholar
Wolf, P., Staffelbach, G., Gicquel, L., Müller, J.-D. & Poinsot, T. 2012 Acoustic and large Eddy simulation studies of azimuthal modes in annular combustion chambers. Combust. Flame 159 (11), 33983413.CrossRefGoogle Scholar
Zinn, B. & Lores, M. 1972 Application of the Galerkin method in the solution of non-linear axial combustion instability problems in liquid rockets. Combust. Sci. Technol. 4, 269278.CrossRefGoogle Scholar
Supplementary material: File

Latour et al. supplementary material

Latour et al. supplementary material
Download Latour et al. supplementary material(File)
File 598.9 KB