Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T22:27:59.693Z Has data issue: false hasContentIssue false

A unified description of gravity- and kinematics-induced segregation forces in dense granular flows

Published online by Cambridge University Press:  26 August 2021

Lu Jing
Affiliation:
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
Julio M. Ottino
Affiliation:
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA Northwestern Institute on Complex Systems (NICO), Northwestern University, Evanston, IL 60208, USA
Richard M. Lueptow*
Affiliation:
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA Northwestern Institute on Complex Systems (NICO), Northwestern University, Evanston, IL 60208, USA
Paul B. Umbanhowar
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
*
Email address for correspondence: [email protected]

Abstract

Particle segregation is common in natural and industrial processes involving flowing granular materials. Complex, and seemingly contradictory, segregation phenomena have been observed for different boundary conditions and forcing. Using discrete element method simulations, we show that segregation of a single particle intruder can be described in a unified manner across different flow configurations. A scaling relation for the net segregation force is obtained by measuring forces on an intruder particle in controlled-velocity flows where gravity and flow kinematics are varied independently. The scaling law consists of two additive terms: a buoyancy-like gravity-induced pressure gradient term and a shear rate gradient term, both of which depend on the particle size ratio. The shear rate gradient term reflects a kinematics-driven mechanism whereby larger (smaller) intruders are pushed toward higher (lower) shear rate regions. The scaling is validated, without refitting, in wall-driven flows, inclined wall-driven flows, vertical silo flows, and free-surface flows down inclines. Comparing the segregation force with the intruder weight results in predictions of the segregation direction that match experimental and computational results for various flow configurations.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asmolov, E.S. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 6387.CrossRefGoogle Scholar
Chassagne, R., Maurin, R., Chauchat, J., Gray, J.M.N.T. & Frey, P. 2020 Discrete and continuum modelling of grain size segregation during bedload transport. J. Fluid Mech. 895, A30.CrossRefGoogle Scholar
Clark, A.H., Thompson, J.D., Shattuck, M.D., Ouellette, N.T. & O'Hern, C.S. 2018 Critical scaling near the yielding transition in granular media. Phys. Rev. E 97 (6), 062901.CrossRefGoogle ScholarPubMed
da Cruz, F., Emam, S., Prochnow, M., Roux, J. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.CrossRefGoogle ScholarPubMed
Di Carlo, D., Edd, J.F., Humphry, K.J., Stone, H.A. & Toner, M. 2009 Particle segregation and dynamics in confined flows. Phys. Rev. Lett. 102 (9), 094503.CrossRefGoogle ScholarPubMed
Duan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2020 Segregation models for density-bidisperse granular flows. Phys. Rev. Fluids 5 (4), 044301.CrossRefGoogle Scholar
Duan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2021 Modelling segregation of bidisperse granular mixtures varying simultaneously in size and density for free surface flows. J. Fluid Mech. 918, A20.CrossRefGoogle Scholar
Ekanayake, N.I.K., Berry, J.D., Stickland, A.D., Dunstan, D.E., Muir, I.L., Dower, S.K. & Harvie, D.J.E. 2020 Lift and drag forces acting on a particle moving with zero slip in a linear shear flow near a wall. J. Fluid Mech. 904, A6.CrossRefGoogle Scholar
Fan, Y. & Hill, K.M. 2011 Phase transitions in shear-induced segregation of granular materials. Phys. Rev. Lett. 106 (21), 218301.CrossRefGoogle ScholarPubMed
Fan, Y., Schlick, C.P., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2014 Modelling size segregation of granular materials: the roles of segregation, advection and diffusion. J. Fluid Mech. 741, 252279.CrossRefGoogle Scholar
Félix, G. & Thomas, N. 2004 Evidence of two effects in the size segregation process in dry granular media. Phys. Rev. E 70 (5), 051307.CrossRefGoogle ScholarPubMed
Ferdowsi, B., Ortiz, C.P., Houssais, M. & Jerolmack, D.J. 2017 River-bed armouring as a granular segregation phenomenon. Nat. Commun. 8 (1), 1363.CrossRefGoogle ScholarPubMed
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40 (1), 124.CrossRefGoogle Scholar
Frey, P. & Church, M. 2009 How river beds move. Science 325 (5947), 15091510.CrossRefGoogle ScholarPubMed
Fry, A.M., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2018 Effect of pressure on segregation in granular shear flows. Phys. Rev. E 97 (6), 062906.CrossRefGoogle ScholarPubMed
Gajjar, P. & Gray, J.M.N.T. 2014 Asymmetric flux models for particle-size segregation in granular avalanches. J. Fluid Mech. 757, 297329.CrossRefGoogle Scholar
GDR MiDi 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.CrossRefGoogle Scholar
Golick, L.A. & Daniels, K.E. 2009 Mixing and segregation rates in sheared granular materials. Phys. Rev. E 80 (4), 042301.CrossRefGoogle ScholarPubMed
Gray, J.M.N.T. 2018 Particle segregation in dense granular flows. Annu. Rev. Fluid Mech. 50 (1), 407433.CrossRefGoogle Scholar
Gray, J.M.N.T. & Ancey, C. 2015 Particle-size and -density segregation in granular free-surface flows. J. Fluid Mech. 779, 622668.CrossRefGoogle Scholar
Gray, J.M.N.T. & Thornton, A.R. 2005 A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. A 461 (2057), 14471473.CrossRefGoogle Scholar
Guillard, F., Forterre, Y. & Pouliquen, O. 2016 Scaling laws for segregation forces in dense sheared granular flows. J. Fluid Mech. 807, R1.CrossRefGoogle Scholar
Hill, K.M. & Tan, D.S. 2014 Segregation in dense sheared flows: gravity, temperature gradients, and stress partitioning. J. Fluid Mech. 756, 5488.CrossRefGoogle Scholar
Itoh, R. & Hatano, T. 2019 Geological implication of grain-size segregation in dense granular matter. Phil. Trans. R. Soc. A 377 (2136), 20170390.CrossRefGoogle Scholar
Iverson, R.M. 1997 The physics of debris flows. Rev. Geophys. 35 (3), 245296.CrossRefGoogle Scholar
Jenkins, J.T. & Yoon, D.K. 2002 Segregation in binary mixtures under gravity. Phys. Rev. Lett. 88 (19), 194301.CrossRefGoogle ScholarPubMed
Jing, L., Kwok, C.Y. & Leung, Y.F. 2017 Micromechanical origin of particle size segregation. Phys. Rev. Lett. 118 (11), 118001.CrossRefGoogle ScholarPubMed
Jing, L., Kwok, C.Y., Leung, Y.F. & Sobral, Y.D. 2016 Characterization of base roughness for granular chute flows. Phys. Rev. E 94 (5), 052901.CrossRefGoogle ScholarPubMed
Jing, L., Ottino, J.M., Lueptow, R.M. & Umbanhowar, P.B. 2020 Rising and sinking intruders in dense granular flows. Phys. Rev. Res. 2 (2), 022069.CrossRefGoogle Scholar
Johnson, C.G., Kokelaar, B.P., Iverson, R.M., Logan, M., LaHusen, R.G. & Gray, J.M.N.T. 2012 Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. 117 (F1), F01032.CrossRefGoogle Scholar
Jones, R.P., Isner, A.B., Xiao, H., Ottino, J.M., Umbanhowar, P.B. & Lueptow, R.M. 2018 Asymmetric concentration dependence of segregation fluxes in granular flows. Phys. Rev. Fluids 3 (9), 094304.CrossRefGoogle Scholar
Kamrin, K. 2019 Non-locality in granular flow: phenomenology and modeling approaches. Front. Phys. 7, 116.CrossRefGoogle Scholar
Kamrin, K. & Henann, D.L. 2015 Nonlocal modeling of granular flows down inclines. Soft Matt. 11 (1), 179185.CrossRefGoogle ScholarPubMed
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108 (17), 178301.CrossRefGoogle ScholarPubMed
Khola, N. & Wassgren, C. 2016 Correlations for shear-induced percolation segregation in granular shear flows. Powder Technol. 288, 441452.CrossRefGoogle Scholar
Kiani Oshtorjani, M., Meng, L. & Müller, C.R. 2021 Accurate buoyancy and drag force models to predict particle segregation in vibrofluidized beds. Phys. Rev. E 103 (6), 062903.CrossRefGoogle ScholarPubMed
Kim, S. & Kamrin, K. 2020 Power-law scaling in granular rheology across flow geometries. Phys. Rev. Lett. 125 (8), 088002.CrossRefGoogle ScholarPubMed
Kloss, C., Goniva, C., Hager, A., Amberger, S. & Pirker, S. 2012 Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. 12 (2), 140152.CrossRefGoogle Scholar
Kumar, A., Khakhar, D.V. & Tripathi, A. 2019 Theoretical calculation of the buoyancy force on a particle in flowing granular mixtures. Phys. Rev. E 100 (4), 042909.CrossRefGoogle ScholarPubMed
Larcher, M. & Jenkins, J.T. 2015 The evolution of segregation in dense inclined flows of binary mixtures of spheres. J. Fluid Mech. 782, 405429.CrossRefGoogle Scholar
Lerner, E., Düring, G. & Wyart, M. 2012 A unified framework for non-Brownian suspension flows and soft amorphous solids. Proc. Natl Acad. Sci. USA 109 (13), 47984803.CrossRefGoogle ScholarPubMed
Lois, G., LemaÎtre, A. & Carlson, J.M. 2006 Emergence of multi-contact interactions in contact dynamics simulations of granular shear flows. Europhys. Lett. 76 (2), 318.CrossRefGoogle Scholar
Louge, M.Y. 2003 Model for dense granular flows down bumpy inclines. Phys. Rev. E 67 (6), 061303.CrossRefGoogle ScholarPubMed
Marks, B., Rognon, P. & Einav, I. 2012 Grainsize dynamics of polydisperse granular segregation down inclined planes. J. Fluid Mech. 690, 499511.CrossRefGoogle Scholar
Martel, J.M. & Toner, M. 2014 Inertial focusing in microfluidics. Annu. Rev. Biomed. Engng 16 (1), 371396.CrossRefGoogle ScholarPubMed
Matas, J.-P., Morris, J.F. & Guazzelli, É. 2004 Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171195.CrossRefGoogle Scholar
Ottino, J.M. & Khakhar, D.V. 2000 Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32 (1), 5591.CrossRefGoogle Scholar
Ottino, J.M. & Lueptow, R.M. 2008 On mixing and demixing. Science 319 (5865), 912913.CrossRefGoogle ScholarPubMed
Rousseau, H., Chassagne, R., Chauchat, J., Maurin, R. & Frey, P. 2021 Bridging the gap between particle-scale forces and continuum modelling of size segregation: application to bedload transport. J. Fluid Mech. 916, A26.CrossRefGoogle Scholar
Saffman, P.G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (2), 385400.CrossRefGoogle Scholar
Saitoh, K. & Tighe, B.P. 2019 Nonlocal effects in inhomogeneous flows of soft athermal disks. Phys. Rev. Lett. 122 (18), 188001.CrossRefGoogle ScholarPubMed
Savage, S.B. & Lun, C.K.K. 1988 Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311335.CrossRefGoogle Scholar
Schlick, C.P., Fan, Y., Isner, A.B., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2015 Modeling segregation of bidisperse granular materials using physical control parameters in the quasi-2d bounded heap. AIChE J. 61 (5), 15241534.CrossRefGoogle Scholar
van Schrojenstein Lantman, M.P. 2019 A study on fundamental segregation mechanisms in dense granular flows. PhD thesis, University of Twente, Enschede, The Netherlands.Google Scholar
van Schrojenstein Lantman, M.P., van der Vaart, K., Luding, S. & Thornton, A.R. 2021 Granular buoyancy in the context of segregation of single large grains in dense granular shear flows. Phys. Rev. Fluids 6 (6), 064307.CrossRefGoogle Scholar
Segré, G. & Silberberg, A. 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature 189 (4760), 209210.CrossRefGoogle Scholar
Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D. & Plimpton, S.J. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64 (5), 051302.CrossRefGoogle ScholarPubMed
Silbert, L.E., Grest, G.S., Brewster, R. & Levine, A.J. 2007 Rheology and contact lifetimes in dense granular flows. Phys. Rev. Lett. 99 (6), 068002.CrossRefGoogle ScholarPubMed
Silbert, L.E., Landry, J.W. & Grest, G.S. 2003 Granular flow down a rough inclined plane: transition between thin and thick piles. Phys. Fluids 15 (1), 110.CrossRefGoogle Scholar
Staron, L. 2018 Rising dynamics and lift effect in dense segregating granular flows. Phys. Fluids 30 (12), 123303.CrossRefGoogle Scholar
Thomas, N. 2000 Reverse and intermediate segregation of large beads in dry granular media. Phys. Rev. E 62 (1), 961974.CrossRefGoogle ScholarPubMed
Trewhela, T., Gray, J.M.N.T. & Ancey, C. 2021 Large particle segregation in two-dimensional sheared granular flows. Phys. Rev. Fluids 6 (5), 054302.CrossRefGoogle Scholar
Tripathi, A. & Khakhar, D.V. 2011 Numerical simulation of the sedimentation of a sphere in a sheared granular fluid: A granular Stokes experiment. Phys. Rev. Lett. 107 (10), 108001.CrossRefGoogle Scholar
Tripathi, A. & Khakhar, D.V. 2013 Density difference-driven segregation in a dense granular flow. J. Fluid Mech. 717, 643669.CrossRefGoogle Scholar
Tripathi, A., Kumar, A., Nema, M. & Khakhar, D.V. 2021 Theory for size segregation in flowing granular mixtures based on computation of forces on a single large particle. Phys. Rev. E 103 (3), L031301.CrossRefGoogle ScholarPubMed
Trujillo, L., Alam, M. & Herrmann, H.J. 2003 Segregation in a fluidized binary granular mixture: competition between buoyancy and geometric forces. Europhys. Lett. 64 (2), 190196.CrossRefGoogle Scholar
Tunuguntla, D.R., Weinhart, T. & Thornton, A.R. 2016 Comparing and contrasting size-based particle segregation models. Comput. Part. Mech. 4 (4), 387405.CrossRefGoogle Scholar
Umbanhowar, P.B., Lueptow, R.M. & Ottino, J.M. 2019 Modeling segregation in granular flows. Annu. Rev. Chem. Biomol. Engng 10 (1), 5.15.25.Google ScholarPubMed
van der Vaart, K., Gajjar, P., Epely-Chauvin, G., Andreini, N., Gray, J.M.N.T. & Ancey, C. 2015 Underlying asymmetry within particle size segregation. Phys. Rev. Lett. 114 (23), 238001.CrossRefGoogle ScholarPubMed
van der Vaart, K., van Schrojenstein Lantman, M.P., Weinhart, T., Luding, S., Ancey, C. & Thornton, A.R. 2018 Segregation of large particles in dense granular flows suggests a granular Saffman effect. Phys. Rev. Fluids 3 (7), 074303.CrossRefGoogle Scholar
Weinhart, T., Thornton, A.R., Luding, S. & Bokhove, O. 2012 Closure relations for shallow granular flows from particle simulations. Granul. Matt. 14 (4), 531552.CrossRefGoogle Scholar
Zhang, N.F. 2006 Calculation of the uncertainty of the mean of autocorrelated measurements. Metrologia 43 (4), S276S281.CrossRefGoogle Scholar
Supplementary material: File

Jing et al. supplementary material

Jing et al. supplementary material

Download Jing et al. supplementary material(File)
File 75.5 KB