Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-04T02:27:51.113Z Has data issue: false hasContentIssue false

Ultrasound-induced dense granular flows: a two-time scale modelling

Published online by Cambridge University Press:  30 January 2025

H.A. Martin*
Affiliation:
Institut de Physique du Globe de Paris, Université Paris Cité, CNRS, F-75005 Paris, France Laboratoire Jacques-Louis Lions (LJLL), Sorbonne Université, CNRS, Université Paris Cité, F-75005 Paris, France
A. Mangeney
Affiliation:
Institut de Physique du Globe de Paris, Université Paris Cité, CNRS, F-75005 Paris, France Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France
X. Jia*
Affiliation:
Institut Langevin, ESPCI Paris, Université PSL, CNRS, F-75005 Paris, France Université Gustave Eiffel, 77454 Marne-la-Vallée Cedex 2, France
B. Maury
Affiliation:
Département de Mathématiques Appliquées, École Normale Supérieure, Université PSL, F-75005 Paris, France Laboratoire de Mathématiques d'Orsay, Université Paris-Saclay, 91405 Orsay Cedex, France
A. Lefebvre-Lepot
Affiliation:
Fédération de Mathématiques de CentraleSupélec, CNRS, FR-3487, CentraleSupélec, Université Paris-Saclay, Saclay, France
Y. Maday
Affiliation:
Laboratoire Jacques-Louis Lions (LJLL), Sorbonne Université, CNRS, Université Paris Cité, F-75005 Paris, France Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France
P. Dérand
Affiliation:
Institut Langevin, ESPCI Paris, Université PSL, CNRS, F-75005 Paris, France
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Understanding the mechanisms behind the remote triggering of landslides by seismic waves at micro-strain amplitude is essential for quantifying seismic hazards. Granular materials provide a relevant model system to investigate landslides within the unjamming transition framework, from solid to liquid states. Furthermore, recent laboratory experiments have revealed that ultrasound-induced granular avalanches can be related to a reduction in the interparticle friction through shear acoustic lubrication of the contacts. However, investigating slip at the scale of grain contacts within an optically opaque granular medium remains a challenging issue. Here, we propose an original coupling model and numerically investigate two-dimensional dense granular flows triggered by basal acoustic waves. We model the triggering dynamics at two separated time scales – one for grain motion (milliseconds) and the other for ultrasound (10 ${\rm \mu} {\rm s}$) – relying on the computation of vibrational modes with a discrete element method through the reduction of the local friction. We show that ultrasound predominantly propagates through the strong-force chains, while the ultrasound-induced decrease of interparticle friction occurs in the weak contact forces perpendicular to the strong-force chains. This interparticle friction reduction initiates local rearrangements at the grain scale that eventually lead to a continuous flow through a percolation process at the macroscopic scale – with a delay depending on the proximity to the failure. Consistent with experiments, we show that ultrasound-induced flow appears more uniform in space than pure gravity-driven flow, indicating the role of an effective temperature by ultrasonic vibration.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acary, V., Cadoux, F., Lemaréchal, C. & Malick, J. 2011 A formulation of the linear discrete Coulomb friction problem via convex optimization. Z. Angew. Math. Mech. 91 (2), 155175.CrossRefGoogle Scholar
Andreotti, B., Forterre, Y. & Pouliquen, O. 2013 Granular Media: Between Fluid and Solid. Cambridge University Press.CrossRefGoogle Scholar
Anitescu, M. 2006 Optimization-based simulation of nonsmooth rigid multibody dynamics. Math. Program. 105 (1), 113143.CrossRefGoogle Scholar
Bachelet, V., Mangeney, A., Toussaint, R., de Rosny, J., Arran, M.I., Farin, M. & Hibert, C. 2023 Acoustic emissions of nearly steady and uniform granular flows: a proxy for flow dynamics and velocity fluctuations. J. Geophys. Res. 128 (4), e2022JF006990.CrossRefGoogle Scholar
Baldassarri, A., Dalton, F., Petri, A., Zapperi, S., Pontuale, G. & Pietronero, L. 2006 Brownian forces in sheared granular matter. Phys. Rev. Lett. 96 (11), 118002.CrossRefGoogle ScholarPubMed
Baumberger, T. & Caroli, C. 2006 Solid friction from stick–slip down to pinning and aging. Adv. Phys. 55 (3–4), 279348.CrossRefGoogle Scholar
Bloch, H. & Lefebvre-Lepot, A. 2023 On convex numerical schemes for inelastic contacts with friction. In ESAIM: Proceedings and Surveys (ed. M. Doumic, S. Gadat & Q. Mérigot), vol. 75, pp. 24–59. EDP Sciences.CrossRefGoogle Scholar
Bonneau, L., Andreotti, B. & Clément, E. 2008 Evidence of Rayleigh-Hertz surface waves and shear stiffness anomaly in granular media. Phys. Rev. Lett. 101, 118001.CrossRefGoogle ScholarPubMed
Bouchon, M., Durand, V., Marsan, D., Karabulut, H. & Schmittbuhl, J. 2013 The long precursory phase of most large interplate earthquakes. Nat. Geosci. 6 (4), 299302.CrossRefGoogle Scholar
Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B. 2013 Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111 (23), 238301.CrossRefGoogle ScholarPubMed
Brum, J., Gennisson, J., Fink, M., Tourin, A. & Jia, X. 2019 Drastic slowdown of the Rayleigh-like wave in unjammed granular suspensions. Phys. Rev. E 99, 042902.CrossRefGoogle ScholarPubMed
Brunet, T., Jia, X. & Mills, P. 2008 Mechanisms for acoustic absorption in dry and weakly wet granular media. Phys. Rev. Lett. 101 (13), 138001.CrossRefGoogle ScholarPubMed
Bureau, L., Baumberger, T. & Caroli, C. 2001 Jamming creep of a frictional interface. Phys. Rev. E 64 (3), 031502.CrossRefGoogle ScholarPubMed
Canel, V., Jia, X., Campillo, M. & Ionescu, I. 2024 Acoustic monitoring of compaction in cohesive granular materials. Phys. Rev. E 109 (2), 024902.CrossRefGoogle ScholarPubMed
Clement, E. & Rajchenbach, J. 1991 Fluidization of a bidimensional powder. Europhys. Lett. 16 (2), 133138.CrossRefGoogle Scholar
Cochard, A., Bureau, L. & Baumberger, T. 2003 Stabilization of frictional sliding by normal load modulation. Trans. ASME J. Appl. Mech. 70 (2), 220226.CrossRefGoogle Scholar
Coussot, P., Nguyen, Q.D., Huynh, H.T. & Bonn, D. 2002 Avalanche behavior in yield stress fluids. Phys. Rev. Lett. 88 (17), 175501.CrossRefGoogle ScholarPubMed
Couto, R.T. 2013 Green's functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domain. Rev. Bras. Ensino Fís. 35 (1), 18.CrossRefGoogle Scholar
Cundall, P.A. & Strack, O.D.L. 1979 A discrete numerical model for granular assemblies. Géotechnique 29 (1), 4765.CrossRefGoogle Scholar
D'Anna, G., Mayor, P., Barrat, A., Loreto, V. & Nori, F. 2003 Observing Brownian motion in vibration-fluidized granular matter. Nature 424 (6951), 909912.CrossRefGoogle ScholarPubMed
Daerr, A. & Douady, S. 1999 Two types of avalanche behaviour in granular media. Nature 399 (6733), 241243.CrossRefGoogle Scholar
Deboeuf, S., Dauchot, O., Staron, L., Mangeney, A. & Vilotte, J.-P. 2005 Memory of the unjamming transition during cyclic tiltings of a granular pile. Phys. Rev. E 72, 051305.CrossRefGoogle ScholarPubMed
Delannay, R., Duranteau, M. & Tournat, V. 2015 Precursors and triggering mechanisms of granular avalanches. C. R. Phys. 16 (1), 4550.CrossRefGoogle Scholar
Dijksman, J.A., Wortel, G.H., van Dellen, L.T.H., Dauchot, O. & van Hecke, M. 2011 Jamming, yielding, and rheology of weakly vibrated granular media. Phys. Rev. Lett. 107 (10), 108303.CrossRefGoogle ScholarPubMed
Durand, V., et al. 2018 On the link between external forcings and slope instabilities in the Piton de la Fournaise Summit Crater, Reunion Island. J. Geophys. Res. 123 (10), 24222442.CrossRefGoogle Scholar
Durand, V., et al. 2023 Repetitive small seismicity coupled with rainfall can trigger large slope instabilities on metastable volcanic edifices. Commun. Earth Environ. 4 (1), 383.CrossRefGoogle Scholar
Ferdowsi, B., Griffa, M., Guyer, R.A., Johnson, P.A., Marone, C. & Carmeliet, J. 2013 Microslips as precursors of large slip events in the stick-slip dynamics of sheared granular layers: a discrete element model analysis. Geophys. Res. Lett. 40 (16), 41944198.CrossRefGoogle Scholar
Gibiat, V., Plazza, E. & De Guibert, P. 2008 Acoustic emission before avalanches in granular media. J. Acoust. Soc. Am. 123 (5 Suppl), 3142.CrossRefGoogle Scholar
Gomberg, J., Reasenberg, P.A., Bodin, P. & Harris, R.A. 2001 Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes. Nature 411 (6836), 462466.CrossRefGoogle Scholar
Hanotin, C., Kiesgen de Richter, S., Marchal, P., Michot, L.J. & Baravian, C. 2012 Vibration-induced liquefaction of granular suspensions. Phys. Rev. Lett. 108 (19), 198301.CrossRefGoogle ScholarPubMed
Harazi, M., Yang, Y., Fink, M., Tourin, A. & Jia, X. 2017 Time reversal of ultrasound in granular media. Eur. Phys. J. 226 (7), 14871497.Google Scholar
Hill, D.P., et al. 1993 Seismicity remotely triggered by the magnitude 7.3 Landers, California, Earthquake. Science 260 (5114), 16171623.CrossRefGoogle ScholarPubMed
Jaeger, H.M., Liu, C.-H. & Nagel, S.R. 1989 Relaxation at the angle of repose. Phys. Rev. Lett. 62 (1), 4043.CrossRefGoogle ScholarPubMed
Jaeger, H.M, Liu, C.-H., Nagel, S.R & Witten, T.A 1990 Friction in granular flows. Europhys. Lett. 11 (7), 619624.CrossRefGoogle Scholar
Jean, M. 1999 The non-smooth contact dynamics method. Comput. Meth. Appl. Mech. Engng 177 (3–4), 235257.CrossRefGoogle Scholar
Jean, M. & Moreau, J.J. 1992 Unilaterality and dry friction in the dynamics of rigid body collections. In 1st Proceedings of Contact Mechanics International Symposium (ed. A. Curnier), pp. 31–48. Presses Polytechniques et Universitaires Romandes.Google Scholar
Jia, X., Brunet, T. & Laurent, J. 2011 Elastic weakening of a dense granular pack by acoustic fluidization: slipping, compaction, and aging. Phys. Rev. E 84 (2), 020301.CrossRefGoogle ScholarPubMed
Jia, X., Caroli, C. & Velicky, B. 1999 Ultrasound propagation in externally stressed granular media. Phys. Rev. Lett. 82, 18631866.CrossRefGoogle Scholar
Johnson, D.L., Schwartz, L.M., Elata, D., Berryman, J.G., Hornby, B. & Norris, A.N. 1998 Linear and nonlinear elasticity of granular media: stress-induced anisotropy of a random sphere pack. Trans. ASME J. Appl. Mech. 65 (2), 380388.CrossRefGoogle Scholar
Johnson, K.L. 1985 Contact Mechanics. Cambridge University Press.CrossRefGoogle Scholar
Johnson, P.A., Ferdowsi, B., Kaproth, B.M., Scuderi, M., Griffa, M., Carmeliet, J., Guyer, R.A., Le Bas, P.-Y., Trugman, D.T. & Marone, C. 2013 Acoustic emission and microslip precursors to stick-slip failure in sheared granular material. Geophys. Res. Lett. 40 (21), 56275631.CrossRefGoogle Scholar
Johnson, P.A. & Jia, X. 2005 Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 437 (7060), 871874.CrossRefGoogle ScholarPubMed
Johnson, P.A., Savage, H., Knuth, M., Gomberg, J. & Marone, C. 2008 Effects of acoustic waves on stick–slip in granular media and implications for earthquakes. Nature 451 (7174), 5760.CrossRefGoogle ScholarPubMed
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108 (17), 178301.CrossRefGoogle ScholarPubMed
Keefer, D.K. 2002 Investigating landslides caused by earthquakes – a historical review. Surv. Geophys. 23 (6), 473510.CrossRefGoogle Scholar
Khidas, Y. & Jia, X. 2010 Anisotropic nonlinear elasticity in a spherical-bead pack: influence of the fabric anisotropy. Phys. Rev. E 81, 021303.CrossRefGoogle Scholar
Lastakowski, H., Géminard, J.-C. & Vidal, V. 2015 Granular friction: triggering large events with small vibrations. Sci. Rep. 5 (1), 13455.CrossRefGoogle ScholarPubMed
Leibig, M. 1994 Model for the propagation of sound in granular materials. Phys. Rev. E 49, 16471656.CrossRefGoogle ScholarPubMed
Lemrich, L., Carmeliet, J., Johnson, P.A., Guyer, R. & Jia, X. 2017 Dynamic induced softening in frictional granular materials investigated by discrete-element-method simulation. Phys. Rev. E 96, 062901.CrossRefGoogle ScholarPubMed
Léopoldès, J., Conrad, G. & Jia, X. 2013 Onset of sliding in amorphous films triggered by high-frequency oscillatory shear. Phys. Rev. Lett. 110 (24), 248301.CrossRefGoogle ScholarPubMed
Leópoldès, J., Jia, X., Tourin, A. & Mangeney, A. 2020 Triggering granular avalanches with ultrasound. Phys. Rev. E 102 (4), 042901.CrossRefGoogle ScholarPubMed
Liu, C. & Nagel, S.R. 1992 Sound in sand. Phys. Rev. Lett. 68, 23012304.CrossRefGoogle ScholarPubMed
Makse, H.A., Gland, N., Johnson, D.L. & Schwartz, L. 2004 Granular packings: nonlinear elasticity, sound propagation, and collective relaxation dynamics. Phys. Rev. E 70, 061302.CrossRefGoogle ScholarPubMed
Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G. & Lucas, A. 2010 Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115, F03040.CrossRefGoogle Scholar
Marone, C. 1998 Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26 (1), 643696.CrossRefGoogle Scholar
Martin, H.A., Mangeney, A., Lefebvre-Lepot, A., Maury, B. & Maday, Y. 2023 a An optimization-based discrete element model for dry granular flows: application to granular collapse on erodible beds. J. Comput. Phys. 498 (2022), 112665.CrossRefGoogle Scholar
Martin, H.A., Peruzzetto, M., Viroulet, S., Mangeney, A., Lagrée, P.-Y., Popinet, S., Maury, B., Lefebvre-Lepot, A., Maday, Y. & Bouchut, F. 2023 b Numerical simulations of granular dam break: comparison between discrete element, Navier–Stokes, and thin-layer models. Phys. Rev. E 108 (5), 054902.CrossRefGoogle ScholarPubMed
Maury, B. 2006 A time-stepping scheme for inelastic collisions: numerical handling of the nonoverlapping constraint. Numer. Math. 102 (4), 649679.CrossRefGoogle Scholar
Melosh, H.J. 1996 Dynamical weakening of faults by acoustic fluidization. Nature 379 (6566), 601606.CrossRefGoogle Scholar
Moreau, J.J. 1988 Unilateral contact and dry friction in finite freedom dynamics. In Nonsmooth Mechanics and Applications (ed. J.-J. Moreau & P.D. Panagiotopoulos), pp. 1–82. Springer.CrossRefGoogle Scholar
Moreau, J.J. 1994 Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A/Solids 13, 93114.Google Scholar
Moreau, J.J. 1999 Numerical aspects of the sweeping process. Comput. Meth. Appl. Mech. Engng 177 (3–4), 329349.CrossRefGoogle Scholar
Moreau, J.J. 2004 An introduction to unilateral dynamics. In Novel Approaches in Civil Engineering (ed. M. Frémond & F. Maceri), vol. 14, pp. 1–46. Springer.CrossRefGoogle Scholar
Mosek APS 2010 The MOSEK optimization software. Available at: http://www.mosek.com.Google Scholar
Nasuno, S., Kudrolli, A. & Gollub, J.P. 1997 Friction in granular layers: hysteresis and precursors. Phys. Rev. Lett. 79 (5), 949952.CrossRefGoogle Scholar
Nerone, N., Aguirre, M.A., Calvo, A., Bideau, D. & Ippolito, I. 2003 Instabilities in slowly driven granular packing. Phys. Rev. E 67 (1), 011302.CrossRefGoogle ScholarPubMed
Nichol, K., Zanin, A., Bastien, R., Wandersman, E. & van Hecke, M. 2010 Flow-induced agitations create a granular fluid. Phys. Rev. Lett. 104 (7), 078302.CrossRefGoogle ScholarPubMed
Parteli, E.J.R., Gomes, M.A.F. & Brito, V.P. 2005 Nontrivial temporal scaling in a Galilean stick-slip dynamics. Phys. Rev. E 71 (3), 036137.CrossRefGoogle Scholar
Pouliquen, O. & Forterre, Y. 2002 Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.CrossRefGoogle Scholar
Pouliquen, O. & Renaut, N. 1996 Onset of granular flows on an inclined rough surface: dilatancy effects. J. Phys. II 6 (6), 923935.Google Scholar
Quartier, L., Andreotti, B., Douady, S. & Daerr, A. 2000 Dynamics of a grain on a sandpile model. Phys. Rev. E 62 (6), 82998307.CrossRefGoogle ScholarPubMed
Radjai, F. & Richefeu, V. 2009 Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41 (6), 715728.CrossRefGoogle Scholar
Reddy, K.A., Forterre, Y. & Pouliquen, O. 2011 Evidence of mechanically activated processes in slow granular flows. Phys. Rev. Lett. 106 (10), 108301.CrossRefGoogle ScholarPubMed
Scholz, C.H. 2019 The Mechanics of Earthquakes and Faulting. Cambridge University Press.CrossRefGoogle Scholar
SCoPI Software 2022 The SCoPI software. Available at: http://www.cmap.polytechnique.fr/~lefebvre/SCoPI/index.html.Google Scholar
Seguin, A., Lefebvre-Lepot, A., Faure, S. & Gondret, P. 2016 Clustering and flow around a sphere moving into a grain cloud. Eur. Phys. J. E 39 (6), 63.CrossRefGoogle ScholarPubMed
Somfai, E., Roux, J.-N., Snoeijer, J.H., van Hecke, M. & van Saarloos, W. 2005 Elastic wave propagation in confined granular systems. Phys. Rev. E 72 (2), 021301.CrossRefGoogle ScholarPubMed
Staron, L. & Hinch, E.J. 2005 Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 127.CrossRefGoogle Scholar
Tang, H., Song, R., Dong, Y. & Song, X. 2019 Measurement of restitution and friction coefficients for granular particles and discrete element simulation for the tests of glass beads. Materials 12 (19), 3170.CrossRefGoogle ScholarPubMed
Tasora, A., Negrut, D. & Anitescu, M. 2008 Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit. Proc. Inst. Mech. Engrs K 222, 315326.Google Scholar
Vitelli, V. 2010 Attenuation of shear sound waves in jammed solids. Soft Matt. 6 (13), 3007.CrossRefGoogle Scholar
van den Wildenberg, S., van Hecke, M. & Jia, X. 2013 Evolution of granular packings by nonlinear acoustic waves. Europhys. Lett. 101 (1), 14004.CrossRefGoogle Scholar
Wyart, M. 2005 On the rigidity of amorphous solids. Ann. Phys. 30 (3), 196.CrossRefGoogle Scholar
Wyart, M. 2009 On the dependence of the avalanche angle on the granular layer thickness. Europhys. Lett. 85 (2), 24003.CrossRefGoogle Scholar
Xu, N., Vitelli, V., Wyart, M., Liu, A.J. & Nagel, S.R. 2009 Energy transport in jammed sphere packings. Phys. Rev. Lett. 102 (3), 038001.CrossRefGoogle ScholarPubMed
Zaloj, V., Urbakh, M. & Klafter, J. 1999 Modifying friction by manipulating normal response to lateral motion. Phys. Rev. Lett. 82 (24), 48234826.CrossRefGoogle Scholar