Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T10:29:46.319Z Has data issue: false hasContentIssue false

Ultrasonic cavitation near a tissue layer

Published online by Cambridge University Press:  30 July 2013

G. A. Curtiss
Affiliation:
Numerical Algorithms Group, Oxford OX2 8DR, UK
D. M. Leppinen*
Affiliation:
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
Q. X. Wang
Affiliation:
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
J. R. Blake
Affiliation:
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
*
Email address for correspondence: [email protected]

Abstract

In this paper we examine the dynamics of an initially stable bubble due to ultrasonic forcing by an acoustic wave. A tissue layer is modelled as a density interface acted upon by surface tension to mimic membrane effects. The effect of a rigid backing to the thin tissue layer is investigated. We are interested in ultrasound contrast agent type bubbles which have immediate biomedical applications such as the delivery of drugs and the instigation of sonoporation. We use the axisymmetric boundary integral technique detailed in Curtiss et al. (J. Comput. Phys., 2013, submitted) to model the interaction between a single bubble and the tissue layer. We have identified a new peeling mechanism whereby the re-expansion of a toroidal bubble can peel away tissue from a rigid backing. We explore the problem over a large range of parameters including tissue layer depth, interfacial tension and ultrasonic forcing.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blomley, M. J. K., Cooke, J. C., Unger, E. C., Monaghan, M. J. & Cosgrove, D. O. 2001 Microbubble contrast agents, a new era in ultrasound. Br. Med. J. 322, 12221225.Google Scholar
Brujan, E. A., Nahen, K., Schmidt, P. & Vogel, A. 2001a Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433, 251281.Google Scholar
Brujan, E. A., Nahen, K., Schmidt, P. & Vogel, A. 2001b Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J. Fluid Mech. 433, 283314.Google Scholar
Calvisi, M. L., Iloreta, J. I. & Szeri, A. J. 2008 Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation collapse. J. Fluid Mech. 616, 6397.Google Scholar
Church, C. C. 1995 The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J. Acoust. Soc. Am. 97, 15101521.Google Scholar
Cosgrove, D. O. 2006 Ultrasound contrast agents: an overview. Eur. J. Radiol. 60, 324330.Google Scholar
Curtiss, G. A., Leppinen, D. M., Wang, Q. X. & Blake, J. R. 2013 The interaction of bubbles with a density interface. Mathematical modelling and numerical implementation. J. Comput. Phys. (submitted).Google Scholar
Fong, S. W., Klaseboer, E., Turangan, C. K., Khoo, B. C. & Hung, K. C. 2006 Numerical analysis of a gas bubble near biomaterials in an ultrasound field. Ultrasound Med. Biol. 32 (6), 925942.CrossRefGoogle Scholar
Klaseboer, E., Hung, K. C., Wang, C., Wang, C. W., Khoo, B. C., Boyce, P., Debono, S. & Charlier, H. 2005 Experimental and numerical investigation of the dynamics of an underwater explosion bubblenear a resilient/rigid structure. J. Fluid Mech. 537, 387413.CrossRefGoogle Scholar
Klaseboer, E. & Khoo, B. C. 2004a Boundary integral equations as applied to an oscillating bubble near a fluid–fluid interface. Comput. Mech. 33, 129138.Google Scholar
Klaseboer, E. & Khoo, B. C. 2004b An oscillating bubble near an elastic material. J. Appl. Phys. 96 (10), 58085818.Google Scholar
Koike, H., Tomita, N., Azuma, H., Taniyama, Y., Yamasaki, K., Kunugiza, Y., Tachibana, K., Ogihara, T. & Morishita, R. 2005 An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. J. Gene Med. 7, 106116.Google Scholar
Leppinen, D. M., Curtiss, G. A., Wang, Q. X. & Blake, J. R. 2011 Bubble behaviour near a two fluid interface. In WIMRC 3rd International Cavition Forum, University of Warwick.Google Scholar
Marmottant, P., van der Meer, S., Emmer, M., Versluis, M., de Jong, N., Hilgenfeldt, S. & Lohse, D. 2005 A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J. Acoust. Soc. Am. 118, 34993505.CrossRefGoogle Scholar
Miao, H. & Gracewski, S. M. 2008 Coupled FEM and BEM code for simulating acousticallyexcited bubbles near deformable structures. Comput. Mech. 42, 95106.Google Scholar
Miller, D. L., Bao, S. & Thrall, B. D. 1997 Transfection of a reporter plasmid into cultured cells in vitro. Ultrasound Med. Biol. 23 (6), 953959.Google Scholar
Miller, D. L., Pislaru, S. V. & Greenleaf, J. F. 2002 Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somatic Cell Mol. Genetics 27 (1), 115134.Google Scholar
Miller, D. & Quddus, J. 2000 Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. Proc. Natl Acad. Sci. USA 97, 1017910184.Google Scholar
Prentice, P., Cuschieri, A., Dholakia, K., Prausnitz, M. & Campbell, P. 2005 Membrane disruption by optically controlled microbubble cavitation. Nat. Phys. 1, 107110.Google Scholar
Rapoport, N., Pitt, W. G., Sun, H. & Nelson, J. L. 2003 Drug delivery in polymeric micelles: from in vitro to in vivo. J. Control. Release 91, 8595.Google Scholar
Seemann, S., Hauff, P., Shultz-Mosgau, M., Lehmann, C. & Reska, R. 2002 Pharmaceutical evaluation of gas-filled microparticles as gene delivery system. Pharmaceut. Res. 19 (3), 250257.CrossRefGoogle ScholarPubMed
Skolarikos, A., Alivizatos, G. & Rosette, J. 2006 Extracorporeal shock wave lithotripsy 25 years later: complications and their prevention. Eur. Urol. 50, 981990.CrossRefGoogle ScholarPubMed
Tomita, Y., Inaba, T., Uchikoshi, R. & Kodama, T. 2008 Peeling off effect and damage pit formation by ultrasonic cavitation. Sci. Bull. Politehnica Univ. Timisoara Trans. Mech. 53, 1924.Google Scholar
Turangan, C. K., Ong, G. P., Klaseboer, E. & Khoo, B. C. 2006 Experimental and numerical study of transient bubble-elastic membrane interaction. J. Appl. Phys. 100, 054910.Google Scholar
Vogel, A., Schweigner, P., Frieser, A., Asiyo, M. N. & Birngruber, R. 1990 Intraocular Nd:YAG laser surgery: light tissue interaction, damage range, and reduction of collateral effects. J. Quant. Electron. 26, 22402260.Google Scholar