Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T21:44:39.430Z Has data issue: false hasContentIssue false

Two-dimensional vortex dynamics in a stratified barotropic fluid

Published online by Cambridge University Press:  26 April 2006

Steve C. Arendt
Affiliation:
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309-0392, USA

Abstract

We show that two-dimensional ‘point’ vortex dynamics in both a polytropic fluid of γ = 3/2 and an isothermal fluid stratified by a constant gravitational field can be written in Hamiltonian form. We find that the formulation admits only one constant of the motion in addition to the Hamiltonian, so that two vortices are the most for which the motion is generally integrable. We study in detail the two-vortex problem and find a rich collection of behaviour: closed trajectories analogous to the circular orbits of the uniform-fluid two-vortex problem, open trajectories for which the self-propelled vortices scatter off each other, and both unstable and stable steadily translating pairs of vortices. Comparison is made to the case of two vortices in a uniform-density fluid bounded by a wall.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aref, H. 1983 Integrable, chaotic, and turbulent vortex motion in two-dimensional flows. Ann. Rev. Fluid Mech. 15, 345389.Google Scholar
Aref, H. & Pomphrey, N. 1982 Integrable and chaotic motions of four vortices I. the case of identical vortices. Proc. R. Soc. Lond. A 380, 359387.Google Scholar
Aref, H., Rott, N. & Thomann, H. 1992 Grobli's solution of the three-vortex problem. Ann. Rev. Fluid Mech. 24, 120.Google Scholar
Arendt, S. 1993a Vorticity in stratified fluids I: general formulation. Geophys. Astrophys. Fluid Dyn. 68, 5983.Google Scholar
Arendt, S. 1993b Vorticity in stratified fluids II: finite cross-section filaments and rings. Geophys. Astrophys. Fluid Dyn. 70, 161193.Google Scholar
Arendt, S. 1993c On the dynamical buoyancy of vortices. Astrophys. J. 412, 664674.Google Scholar
Arendt, S. 1995 Steadily translating vortices in a stratified fluid. Phys. Fluids 7, 384388.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Charney, J. G. 1963 Numerical experiments in atmospheric hydrodynamics. In Proc. Symp. Appl. Math. Am. Math. Soc. 15, 289310.
Chorin, A. J. 1994 Vorticity and Turbulence. Springer.
Grobli, W. 1877 Specielle Probleme uber die Bewegung Geradliniger Paralleler Wirbelfaden. Zuricher und Furrer.
Helmholtz, H. 1867 On the integrals of the hydrodynamical equations which express vortex-motion (transl. by P. G. Tait). Phil. Mag. (4) 33, 483512.Google Scholar
Hogg, N. G. & Stommel, H. M. 1985 The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow. Proc. R. Soc. Lond. A 397, 120.Google Scholar
Kirchhoff, G. R. 1876 Vorlesungen uber Matematische Physik. eubner.
Kraichnan, R. B. & Montgomery, D. 1980 Two dimensional turbulence. Rep. Prog. Phys. 43, 547619.Google Scholar
McWilliams, J. C. 1990 The vortices of two-dimensional turbulence. J. Fluid Mech. 219, 361385.Google Scholar
Morikawa, G. K. 1960 Geostrophic vortex motion. J. Met. 17, 148158.Google Scholar
Novikov, E. A. 1976 Dynamics and statistics of a system of vortices. Sov. Phys.-JETP 41, 937943.Google Scholar
Novikov, E. A. & Sedov, Yu. B. 1978 Vortex collapse. Sov. Phys.-JETP 50, 297301.Google Scholar
Onsager, L. 1949 Statistical hydrodynamics. Nuovo Cimento Supp. 6, 279287.Google Scholar
Parker, E. N. 1985 Stellar fibril magnetic systems II: two-dimensional magnetohydrodynamic equations. Astrophys. J. 294, 4756.Google Scholar
Whittaker, E. T. 1959 A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press.