Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T22:08:16.208Z Has data issue: false hasContentIssue false

Two-dimensional turbulent convection in a toroidal duct of a liquid metal blanket of a fusion reactor

Published online by Cambridge University Press:  14 August 2015

Xuan Zhang*
Affiliation:
Department of Mechanical Engineering, University of Michigan – Dearborn, MI 48128-1491, USA
Oleg Zikanov
Affiliation:
Department of Mechanical Engineering, University of Michigan – Dearborn, MI 48128-1491, USA
*
Email address for correspondence: [email protected]

Abstract

Convection in a horizontal duct aligned with a uniform magnetic field is analysed computationally. The motivation of the study is the concept of a liquid metal blanket for a tokamak fusion reactor, in which ducts are oriented toroidally, i.e. parallel to the main component of the magnetic field. Computations of two-dimensional (streamwise-uniform) flows appearing at very strong magnetic fields and of three-dimensional flows in long domains are conducted. Non-uniform volumetric internal heating is applied, while the walls are maintained at a constant temperature. Two-dimensional or nearly two-dimensional turbulent convection is found at high Grashof and Hartmann numbers typical for fusion reactor conditions. The turbulence results in stronger mixing and more uniform distribution of wall heat flux, indicating promising potential of this concept of the blanket.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belyaev, I. A., Genin, L. G., Listratov, Y. I., Melnikov, I. A., Sviridov, V. G., Sviridov, E. V., Ivochkin, Y. P., Razuvanov, N. G. & Shpansky, Y. S. 2013 Specific features of liquid metal heat transfer in a tokamak reactor. Magnetohydrodynamics 49, 177190.Google Scholar
Belyaev, I. A., Listratov, Y. I., Razuvanov, N. G. & Sviridov, V. G. 2011 Liquid metal heat transfer in inclined tube affected by longitudinal magnetic field. In Proceedings of the 8th PAMIR Conference on Fund. Appl. MHD, Borgo, Corsica, France, pp. 4347. INP, Open Library.Google Scholar
Boeck, T., Krasnov, D., Thess, A. & Zikanov, O. 2008 Large-scale intermittency of liquid-metal channel flow in a magnetic field. J. Fluid Mech. 101, 244501.Google ScholarPubMed
Boeck, T. & Thess, A. 1997 Inertial Bénard–Marangoni convection. J. Fluid Mech. 350, 149175.CrossRefGoogle Scholar
Clercx, H. J. H. & van Heijst, G. J. F. 2009 Two-dimensional Navier–Stokes turbulence in bounded domains. Appl. Mech. Rev. 62, 02082.Google Scholar
Clever, R. M. & Busse, F. H. 1981 Low-Prandtl-number convection in a layer heated from below. J. Fluid Mech. 102, 6174.CrossRefGoogle Scholar
Davidson, P. A. 2001 An Introduction to Magnetohydrodynamics. Cambridge University Press.Google Scholar
Dey, P. & Zikanov, O. 2012 Scalar transport and perturbation dynamics in intermittent magnetohydrodynamic flow. Phys. Fluids 24 (8), 084104.Google Scholar
Genin, L. G., Zhilin, V. G., Ivochkin, Y. P., Razuvanov, N. G., Belyaev, I. A., Listratov, Y. I. & Sviridov, V. G. 2011a Temperature fluctuations in a heated horizontal tube affected by transverse magnetic field. In Proceedings of the 8th PAMIR Conference on Fund. Appl. MHD, Borgo, Corsica, France, pp. 3741. INP, Open Library.Google Scholar
Genin, L. G., Zhilin, V. G., Ivochkin, Y. P., Razuvanov, N. G., Sviridov, V. G., Shestakov, A. A. & Sviridov, E. V. 2011b Liquid metal heat transfer in a vertical tube affected by transverse magnetic field. In Proceedings of the 8th PAMIR Conference on Fund. Appl. MHD, Borgo, Corsica, France, pp. 3135. INP, Open Library.Google Scholar
Goluskin, D. & Spiegel, E. A. 2012 Convection driven by internal heating. Phys. Lett. A 377 (1), 8392.Google Scholar
Gray, D. D. & Giorgini, A. 1976 The validity of the Boussinesq approximation for liquids and gases. Intl J. Heat Mass Transfer 19 (5), 545551.Google Scholar
Hunt, J. C. R. & Hancox, R.1971 The use of liquid lithium as coolant in a toroidal fusion reactor. Tech. Rep. CLM-R 115. Culham Laboratory, England.Google Scholar
Jones, C. A., Moore, D. R. & Weiss, N. O. 1976 Axisymmetric convection in a cylinder. J. Fluid Mech. 73 (02), 353388.Google Scholar
Krasnov, D., Zikanov, O. & Boeck, T. 2011 Comparative study of finite difference approaches to simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number. Comput. Fluids 50, 4659.Google Scholar
Krasnov, D. S., Zikanov, O. & Boeck, T. 2012 Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers. J. Fluid Mech. 704, 421446.CrossRefGoogle Scholar
Liu, L. & Zikanov, O. 2015 Elevator mode convection in flows with strong magnetic fields. Phys. Fluids 27 (4), 044103.CrossRefGoogle Scholar
Lv, X. & Zikanov, O. 2014 Mixed convection in horizontal duct flow with transverse magnetic field and heating of side wall. Phys. Fluids 26 (9), 097106.Google Scholar
Melnikov, I. A., Sviridov, E. V., Sviridov, V. G. & Razuvanov, N. G. 2014 Heat transfer of MHD flow: experimental and numerical research. In Proceedings of the 9th PAMIR Conference on Fund. Appl. MHD, Riga, Latvia, vol. 1, pp. 6569. INP, Open Library.Google Scholar
Mistrangelo, C. & Bühler, L. 2009 Influence of helium cooling channels on magnetohydrodynamic flows in the HCLL blanket. Fusion Engng Des. 84 (7–11), 13231328.Google Scholar
Mistrangelo, C. & Bühler, L. 2011 Numerical analysis of buoyant-convective liquid metal flow in channels exposed to strong magnetic fields. In Fusion Engineering (SOFE), 2011 IEEE/NPSS 24th Symposium on, pp. 16. IEEE.Google Scholar
Mistrangelo, C. & Bühler, L. 2013 Magneto-convective flows in electrically and thermally coupled channels. Fusion Engng Des. 88, 23232327.Google Scholar
Molokov, S., Moreau, R. & Moffatt, H. K. 2007 Magnetohydrodynamics: Historical Evolution and Trends. Springer.Google Scholar
Ni, W., Qiu, S., Su, G., Tian, W. & Wu, Y. 2012 Numerical investigation of buoyant effect on flow and heat transfer of lithium–lead eutectic in DFLL-TBM. Prog. Nucl. Energy 58, 108115.CrossRefGoogle Scholar
Poddubnyi, I., Razuvanov, N., Sviridov, V. & Ivochkin, Y. 2014 Experimental research of the heat transfer liquid metal downwards flow in rectangular duct in magnetic field. In Proceedings of the 9th PAMIR Conference on Fund. Appl. MHD, Riga, Latvia, vol. 1, pp. 330334. INP, Open Library.Google Scholar
Schulz, B. 1991 Thermophysical properties of the $\text{Li}_{17}\text{Pb}_{83}$ alloy. Fusion Engng Des. 14, 199205.Google Scholar
Smith, D. L., Baker, C. C., Sze, D. K., Morgan, G. D., Abdou, M. A., Piet, S. J., Schultz, S. R., Moir, R. W. & Gordon, J. D. 1985 Study of instabilities and quasi-two-dimensional turbulence in volumetrically heated magnetohydrodynamic flows in a vertical rectangular duct. Fusion Technol. 8 (1), 10113.Google Scholar
Smolentsev, S., Moreau, R. & Abdou, M. 2008 Characterization of key magnetohydrodynamic phenomena for PbLi flows for the US DCLL blanket. Fusion Engng Des. 83, 771783.Google Scholar
Smolentsev, S., Morley, M. & Abdou, M. 2006 MHD and thermal issues of the SiCf/SiC flowchannel insert. Fusion Sci. Technol. 50, 107119.CrossRefGoogle Scholar
Thess, A. & Zikanov, O. 2007 Transition from two-dimensional to three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 579, 383412.Google Scholar
Vetcha, N., Smolentsev, S. & Abdou, M. 2009 Theoretical study of mixed convection in poloidal flows of DCLL blanket. Fusion Sci. Technol. 56 (2), 851855.Google Scholar
Vetcha, N., Smolentsev, S., Abdou, M. & Moreau, R. 2013 Study of instabilities and quasi-two-dimensional turbulence in volumetrically heated magnetohydrodynamic flows in a vertical rectangular duct. Phys. Fluids 25 (2), 024102.Google Scholar
Zhang, X. & Zikanov, O. 2014 Mixed convection in a horizontal duct with bottom heating and strong transverse magnetic field. J. Fluid Mech. 757, 3356.Google Scholar
Zikanov, O., Listratov, Y. & Sviridov, V. G. 2013 Natural convection in horizontal pipe flow with strong transverse magnetic field. J. Fluid Mech. 720, 486516.Google Scholar