Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T05:29:33.206Z Has data issue: false hasContentIssue false

Two-dimensional streaming flows driven by sessile semicylindrical microbubbles

Published online by Cambridge University Press:  13 December 2013

Bhargav Rallabandi
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA
Cheng Wang
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA
Sascha Hilgenfeldt*
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA
*
Email address for correspondence: [email protected]

Abstract

Steady streaming flow from oscillating sessile bubbles at walls is the centrepiece of many microstreaming experiments. A complete asymptotic theory of the flow is developed, requiring only the oscillatory driving frequency and material parameters as input, and properly accounting for bubble and wall boundary conditions. It is shown that mixed-mode streaming of neighbouring bubble oscillation modes is responsible for the robustness of the generic ‘fountain’ vortex pair flow pattern, and that the pattern reverses for high frequencies when wall-induced streaming becomes dominant. The far-field flow and its dependence on control parameters are in agreement with experimental data and can be understood considering just a few asymptotic coefficients.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, D., Mao, X., Juluri, B. K. & Huang, T. J. 2009 A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid Nanofluid 7, 727731.Google Scholar
Brown, W., Pu, Z. & Rymdén, R. 1988 Size and shape of nonionic amphiphile micelles: NMR self-diffusion and static and quasi-elastic light-scattering measurements on c12e5, c12e7, and c12e8 in aqueous solution. J. Phys. Chem. 92 (21), 60866094.CrossRefGoogle Scholar
Davidson, B. J. & Riley, N. 1971 Cavitation microstreaming. J. Sound Vib. 15, 217233.CrossRefGoogle Scholar
Doinikov, A. A. & Bouakaz, A. 2010 Acoustic microstreaming around a gas bubble. J. Acoust. Soc. Am. 127 (2), 703709.CrossRefGoogle ScholarPubMed
Lighthill, J. 1978 Acoustic streaming. J. Sound Vib. 61 (3), 391418.Google Scholar
Liu, R. H., Yang, J., Pindera, M. Z., Athavale, M. & Grodzinski, P. 2002 Bubble-induced acoustic micromixing. Lab on a Chip 2 (3), 151157.Google Scholar
Liu, X. & Wu, J. 2009 Acoustic microstreaming around an isolated encapsulated microbubble. J. Acoust. Soc. Am. 125 (3), 13191330.CrossRefGoogle ScholarPubMed
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. Ser. A: Math. Phys. Sci. 245 (903), 535581.Google Scholar
Longuet-Higgins, M. S. 1998 Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. London. Series A: Math., Phys. Engng Sci. 454 (1970), 725742.CrossRefGoogle Scholar
Lutz, B. R., Chen, J. & Schwartz, D. T. 2006 Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Analy. Chem. 78 (15), 54295435.CrossRefGoogle ScholarPubMed
Lutz, R. B., Chen, J. & Schwartz, D. T. 2005 Microscopic steady streaming eddies created around short cylinders in a channel: flow visualization and Stokes layer scaling. Phys. Fluids 17 (2), 023601.Google Scholar
Marmottant, P. & Hilgenfeldt, S. 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423 (6936), 153156.Google Scholar
Marmottant, P. & Hilgenfeldt, S. 2004 A bubble-driven microfludic transport element for bioengineering. Proc. Natl Acad. Sci. USA 101 (26), 95239527.CrossRefGoogle Scholar
Nyborg, W. L. 1958 Acoustic streaming near a boundary. J. Acoust. Soc. Am. 30 (4), 329339.CrossRefGoogle Scholar
Patel, M. V., Tovar, A. R. & Lee, A. P. 2012 Lateral cavity acoustic transducer as an on-chip cell/particle microfluidic switch. Lab on a Chip 12 (1), 139145.Google Scholar
Raney, W. P., Corelli, J. C. & Westervelt, P. J. 1954 Acoustical streaming in the vicinity of a cylinder. J. Acoust. Soc. Am. 26, 9491006.CrossRefGoogle Scholar
Riley, N. 1966 On a sphere oscillating in a viscous fluid. Q. J. Mech. Appl. Maths 19 (4), 461472.CrossRefGoogle Scholar
Riley, N. 1967 Oscillatory viscous flows. Review and extension. IMA J. Appl. Maths 3 (4), 419434.Google Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 4365.Google Scholar
Stebe, K. J. & Maldarelli, C. 1994 Remobilizing surfactant retarded fluid particle interfaces: Ii. controlling the surface mobility at interfaces of solutions containing surface active components. J. Colloid Interface Sci. 163 (1), 177189.Google Scholar
Stuart, J. T. 1966 Double boundary layers in oscillatory viscous flow. J. Fluid Mech. 24 (4), 673687.Google Scholar
Wang, C., Jalikop, S. V. & Hilgenfeldt, S. 2011 Size-sensitive sorting of microparticles through control of flow geometry. Appl. Phys. Lett. 99, 034101.Google Scholar
Wang, C., Jalikop, S. V. & Hilgenfeldt, S. 2012 Efficient manipulation of microparticles in bubble streaming flows. Biomicrofluidics 6 (1), 012801.Google Scholar
Wang, C., Rallabandi, B. & Hilgenfeldt, S. 2013a Frequency dependence and frequency control of microbubble streaming flows. Phys. Fluids 25, 022002.Google Scholar
Wang, C., Rallabandi, B. & Hilgenfeldt, S. 2013b, Optimized mixing strategies with acoustically driven microbubbles Preprint.Google Scholar
Wang, Y., Papageorgiou, D. T. & Maldarelli, C. 1999 Increased mobility of a surfactant-retarded bubble at high bulk concentrations. J. Fluid Mech. 390 (1), 251270.CrossRefGoogle Scholar