Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T22:00:51.633Z Has data issue: false hasContentIssue false

A two-dimensional model of low-Reynolds number swimming beneath a free surface

Published online by Cambridge University Press:  29 June 2011

DARREN CROWDY*
Affiliation:
Department of Mathematics, Imperial College, London SW7 2AZ, UK
SUNGYON LEE
Affiliation:
Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
OPHIR SAMSON
Affiliation:
Department of Mathematics, Imperial College, London SW7 2AZ, UK
ERIC LAUGA
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093-0411, USA
A. E. HOSOI
Affiliation:
Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

Biological organisms swimming at low-Reynolds number are often influenced by the presence of rigid boundaries and soft interfaces. In this paper, we present an analysis of locomotion near a free surface with surface tension. Using a simplified two-dimensional singularity model and combining a complex variable approach with conformal mapping techniques, we demonstrate that the deformation of a free surface can be harnessed to produce steady locomotion parallel to the interface. The crucial physical ingredient lies in the nonlinear hydrodynamic coupling between the disturbance flow created by the swimmer and the free boundary problem at the fluid surface.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ablowitz, M. & Fokas, A. S. 1997 Complex Variables. Cambridge University Press.Google Scholar
Antanovskii, L. I. 1996 Formation of a pointed drop in Taylor's four-roller mill. J. Fluid Mech. 327, 325.CrossRefGoogle Scholar
Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.CrossRefGoogle Scholar
Berg, H. C. & Turner, L. 1990 Chemotaxis of bacteria in glass capillary arrays - Escherichia coli, motility, microchannel plate, and light scattering. Biophys. J. 58, 919930.CrossRefGoogle ScholarPubMed
Berke, A. P., Turner, L., Berg, H. C. & Lauga, E. 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102.CrossRefGoogle ScholarPubMed
Blake, J. R. 1971 a A note on the image system for a Stokeslet in a no-slip boundary. Proc. Camb. Phil. Soc. 70, 303310.CrossRefGoogle Scholar
Blake, J. R. 1971 b Self propulsion due to oscillations on the surface of a cylinder at low Reynolds number. Bull. Austral. Math. Soc. 5, 255264.CrossRefGoogle Scholar
Blake, J. R. & Chwang, A. T. 1974 Fundamental singularities of viscous-flow. Part 1. Image systems in vicinity of a stationary no-slip boundary. J. Engng Maths 8, 2329.CrossRefGoogle Scholar
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339.CrossRefGoogle Scholar
Clift, A. F. & Hart, J. 1953 Variations in the apparent viscosity of human cervical mucus. J. Physiol. 122 (2), 358365.CrossRefGoogle ScholarPubMed
Copeland, M. 1919 Locomotion in two species of the gastropod genus alectrion with observations on the behavior of pedal cilia. Biol. Bull. 37, 126138.CrossRefGoogle Scholar
Copeland, M. 1922 Ciliary and muscular locomotion in the gastropod genus polinices. Biol. Bull. 42, 132142.CrossRefGoogle Scholar
Cosson, J., Huitorel, P. & Gagnon, C. 2003 How spermatozoa come to be confined to surfaces. Cell Motil. Cytoskel. 54, 5663.CrossRefGoogle ScholarPubMed
Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappinscott, H. M. 1995 Microbial biofilms. Ann. Rev. Microbiol. 49, 711745.CrossRefGoogle ScholarPubMed
Crowdy, D. G. 2011 Treadmilling swimmers near a no-slip wall at low Reynolds number. Intl J. Non-Linear Mech. 46, 577585.CrossRefGoogle Scholar
Crowdy, D. G. & Or, Y. 2010 Two-dimensional point singularity model of a low Reynolds number swimmer near a wall. Phys. Rev. E 81, 036313.Google ScholarPubMed
Fauci, L. J. & Mcdonald, A. 1995 Sperm motility in the presence of boundaries. Bull. Math. Biol. 57, 679699.CrossRefGoogle ScholarPubMed
Frymier, P. D. & Ford, R. M. 1997 Analysis of bacterial swimming speed approaching a solid–liquid interface. AlChE J. 43, 13411347.CrossRefGoogle Scholar
Hatwalne, Y., Ramaswamy, S., Rao, M. & , A., Simha, R. 2004 Rheology of active-particle suspensions. Phys. Rev. Lett. 92, 118101.CrossRefGoogle ScholarPubMed
Hernandez-Ortiz, J. P., Stoltz, C. G. & Graham, M. D. 2005 Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95, 204501.CrossRefGoogle ScholarPubMed
Jeong, J. 1999 Formation of cusp on the free surface at low Reynolds number flow. Phys. Fluids 11, 521526.CrossRefGoogle Scholar
Jeong, J. & Moffatt, H. K. 1992 Free-surface cusps associated with flow at low Reynolds number. J. Fluid Mech. 241, 122.CrossRefGoogle Scholar
Katz, D. F. & Blake, J. R. 1975 Flagellar motions near walls. In Swimming and Flying in Nature (ed. Wu, T. Y., Brokaw, C. J. & Brennen, C), vol. 1, pp. 173184. Plenum.Google Scholar
Katz, D. F. 1974 Propulsion of microorganisms near solid boundaries. J. Fluid Mech. 64, 3349.CrossRefGoogle Scholar
Katz, D. F., Blake, J. R. & Paverifontana, S. L. 1975 Movement of slender bodies near plane boundaries at low Reynolds number. J. Fluid Mech. 72, 529540.CrossRefGoogle Scholar
Langlois, W. E. 1964 Slow Viscous Flow. Macmillan.Google Scholar
Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. 2006 Swimming in circles: Motion of bacteria near solid boundaries. Biophys. J. 90, 400412.CrossRefGoogle ScholarPubMed
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.CrossRefGoogle Scholar
Lee, S., Bush, J. W. M., Hosoi, A. E. & Lauga, E. 2008 Crawling beneath the free surface: Water snail locomotion. Phys. Fluids 20, 082106.CrossRefGoogle Scholar
Maeda, K., Imae, Y., Shioi, J. I. & Oosawa, F. 1976 Effect of temperature on motility and chemotaxis of Escherichia coli. J. Bacteriol. 127, 10391046.Google ScholarPubMed
Or, Y. & Murray, R. 2009 Dynamics and stability of a class of low Reynolds number swimmers near a wall. Phys. Rev. E 79, 045302.Google ScholarPubMed
Pedley, T. J. & Kessler, J. O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313358.CrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singurality Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Reynolds, A. J. 1965 The swimming of minute organisms. J. Fluid Mech. 23, 241260.CrossRefGoogle Scholar
Rothschild, L. 1963 Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature 198, 1221.CrossRefGoogle Scholar
Suarez, S. S. & Pacey, A. A. 2006 Sperm transport in the female reproductive tract. Human Reprod. Update 12 (1), 2337.CrossRefGoogle ScholarPubMed
Trouilloud, R., Yu, T. S., Hosoi, A. E. & Lauga, E. 2008 Soft swimming: Exploiting deformable interfaces for low Reynolds number locomotion. Phys. Rev. Lett. 101, 048102.CrossRefGoogle ScholarPubMed
Urzay, J. 2010 Asymptotic theory of the elastohydrodynamic adhesion and gliding motion of a solid particle over soft and sticky substrates at low Reynolds numbers. J. Fluid Mech. 653, 391429.CrossRefGoogle Scholar
Winet, H., Bernstein, G. S. & Head, J. 1984 Observations on the response of human spermatozoa to gravity, boundaries and fluid shear. J. Reprod. Fertil. 70, 511523.CrossRefGoogle ScholarPubMed
Woolley, D. M. 2003 Motility of spermatozoa at surfaces. Reproduction 126, 259270.CrossRefGoogle ScholarPubMed
Zhang, S., Or, Y. & Murray, R. 2010 Experimental demonstration of the dynamics and stability of a low Reynolds number swimmer near a plane wall. In Proc. American Control Conference (ACC), pp. 4205–4210.Google Scholar