Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T11:22:09.719Z Has data issue: false hasContentIssue false

Two-dimensional gravity–capillary solitary waves on deep water: generation and transverse instability

Published online by Cambridge University Press:  17 November 2017

Beomchan Park
Affiliation:
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehakro, Yuseonggu, Daejeon,  34141, Republic of Korea
Yeunwoo Cho*
Affiliation:
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehakro, Yuseonggu, Daejeon,  34141, Republic of Korea
*
Email address for correspondence: [email protected]

Abstract

Two-dimensional (2-D) gravity–capillary solitary waves are generated using a moving pressure jet from a 2-D narrow slit as a forcing onto the surface of deep water. The forcing moves horizontally over the surface of the deep water at speeds close to the minimum phase speed $c_{min}=23~\text{cm}~\text{s}^{-1}$. Four different states are observed according to the forcing speed. At relatively low speeds below $c_{min}$, small-amplitude depressions are observed and they move steadily just below the moving forcing. As the forcing speed increases towards $c_{min}$, nonlinear 2-D gravity–capillary solitary waves are observed, and they move steadily behind the moving forcing. When the forcing speed is very close to $c_{min}$, periodic shedding of a 2-D local depression is observed behind the moving forcing. Finally, at relatively high speeds above $c_{min}$, a pair of short and long linear waves is observed, respectively ahead of and behind the moving forcing. In addition, we observe the transverse instability of free 2-D gravity–capillary solitary waves and, further, the resultant formation of three-dimensional gravity–capillary solitary waves. These experimental observations are compared with numerical results based on a model equation that admits gravity–capillary solitary wave solutions near $c_{min}$. They agree with each other very well. In particular, based on a linear stability analysis, we give a theoretical proof for the transverse instability of the 2-D gravity–capillary solitary waves on deep water.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akers, B. & Milewski, P. A. 2008 Model equations for gravity–capillary waves in deep water. Stud. Appl. Maths 121, 4969.Google Scholar
Akers, B. & Milewski, P. A. 2009 A model equation for wavepacket solitary waves arising from capillary–gravity flows. Stud. Appl. Maths 122, 249274.Google Scholar
Akylas, T. R. 1993 Envelope solitons with stationary crests. Phys. Fluids 5, 789791.Google Scholar
Bridges, T. J. 2001 Transverse instability of solitary-wave states of the water-wave problem. J. Fluid Mech. 439, 255278.Google Scholar
Cho, Y. 2014 Computation of steady gravity–capillary waves on deep water based on the pseudo-arclength continuation method. Comput. Fluids 96, 253263.Google Scholar
Cho, Y. 2015 A modified Petviashvili method using simple stabilizing factors to compute solitary waves. J. Engng Maths 91 (1), 3757.Google Scholar
Cho, Y., Diorio, J. D., Akylas, T. R. & Duncan, J. H. 2011 Resonantly forced gravity–capillary lumps on deep water. Part 2. Theoretical model. J. Fluid Mech. 672, 288306.Google Scholar
Diorio, J. D., Cho, Y., Duncan, J. H. & Akylas, T. R. 2009 Gravity–capillary lumps generated by a moving pressure source. Phys. Rev. Lett. 103, 214502.Google Scholar
Diorio, J. D., Cho, Y., Duncan, J. H. & Akylas, T. R. 2011 Resonantly forced gravity–capillary lumps on deep water. Part 1. Experiments. J. Fluid Mech. 672, 268287.Google Scholar
Hogan, S. J. 1985 The fourth-order evolution equation for deep-water gravity–capillary waves. Proc. R. Soc. Lond. A 402, 359372.Google Scholar
Kim, B. 2012 Long-wave transverse instability of weakly nonlinear gravity–capillary solitary waves. J. Engng Maths 74 (1), 1928.Google Scholar
Kim, B. & Akylas, T. R. 2006 On gravity–capillary lumps. Part 2. Two-dimensional Benjamin equation. J. Fluid Mech. 557, 237256.Google Scholar
Kim, B. & Akylas, T. R. 2007 Transverse instability of gravity–capillary solitary waves. J. Engng Maths 58, 167175.Google Scholar
Longuet-Higgins, M. S. 1974 On the mass, momentum, energy and circulation of a solitary wave. Proc. R. Soc. Lond. A 337, 137.Google Scholar
Longuet-Higgins, M. S. 1989 Capillary–gravity waves of solitary type on deep water. J. Fluid Mech. 200, 451470.Google Scholar
Longuet-Higgins, M. S. 1993 Capillary–gravity waves of solitary type and envelope solitons on deep water. J. Fluid Mech. 252, 703711.Google Scholar
Longuet-Higgins, M. S. 1997 Viscous dissipation in steep capillary–gravity waves. J. Fluid Mech. 344, 271289.Google Scholar
Longuet-Higgins, M. S. & Zhang, X. 1997 Experiments on capillary–gravity waves of solitary type on deep water. Phys. Fluids 9, 19631968.Google Scholar
Masnadi, N. & Duncan, J. H. 2017a The generation of gravity–capillary solitary waves by a pressure source moving at a trans-critical speed. J. Fluid Mech. 810, 448474.Google Scholar
Masnadi, N. & Duncan, J. H. 2017b Observation of gravity–capillary lump interactions. J. Fluid Mech. 814, R1.Google Scholar
Milewski, P. A., Vanden-broeck, J. M. & Wang, Z. 2010 Dynamics of steep two-dimensional gravity–capillary solitary waves. J. Fluid Mech. 664, 466477.Google Scholar
Parau, E. & Vanden-broeck, J. M. 2002 Nonlinear two- and three-dimensional free surface flows due to moving disturbances. Eur. J. Mech. (B/Fluids) 21, 643656.Google Scholar
Park, B. & Cho, Y. 2016 Experimental observation of gravity–capillary solitary waves generated by a moving air suction. J. Fluid Mech. 808, 168188.CrossRefGoogle Scholar
Vanden-Broeck, J. M. & Dias, F. 1992 Gravity–capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech. 240, 549557.Google Scholar
Wang, Z. & Vanden-Broeck, J. M. 2015 Multi-lump symmetric and non-symmetric gravity–capillary solitary waves in deep water. SIAM J. Appl. Maths 75 (3), 978998.Google Scholar