Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T22:15:31.039Z Has data issue: false hasContentIssue false

Two-dimensional disturbance travel, growth and spreading in boundary layers

Published online by Cambridge University Press:  21 April 2006

F. T. Smith
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT

Abstract

The nonlinear growth of Tollmien-Schlichting disturbances in a boundary layer is considered as an initial-value problem, for the unsteady two-dimensional triple deck, and computational and analytical solutions are presented. On the analytical side, the nonlinear properties of relatively high-frequency/high-speed disturbances are discussed. The disturbances travel at the group velocity and their amplitude is controlled by a generalized cubic Schrödinger equation, during a first stage of the nonlinear development. The equation, which has been studied in other contexts also, is integrated numerically here, and the resulting large-time/far-downstream behaviour is then deduced analytically. This behaviour comprises an exponentially fast growth and spreading of the disturbance, the spreading being governed only by an integral property of the initial disturbance. Secondary sideband instability does not occur, and there is no conclusive sign of a chaotic response, during this stage, although the three-dimensional counterpart could well yield both phenomena. In the subsequent (and more nonlinear) second stage further downstream, however, where the amplitude is larger, spiked behaviour and spectrum broadening can occur because of vorticity bursts from the viscous sublayer. Computationally, two forms of numerical solution of the triple-deck problem, one spectral, the other finite-difference, are given. The results from each form tend to support the conclusions of the high-frequency analysis for initial-value problems, and recent calculations of the two-dimensional unsteady Navier-Stokes equations also provide some backing. One implication is that the unsteady planar interacting-boundary-layer equations, or a composite version, can capture much of the physics involved in the beginnings of boundary-layer transition although, again, three-dimensionality is undoubtedly an important element which will need to be incorporated eventually.

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. & Feir, J. E. 1967 J. Fluid Meck. 27, 417.
Benney, D. J. & Maslowe, S. A. 1975 Stud. Appl. Math. 54, 181.
Bretherton, C. S. & Spiegel, E. A. 1983 Phys. Lett. 96 A, 152.
Bullough, R. K., Fordy, A. P. & Manakov, S. V. 1982 Phys. Lett. 91 A, 98.
Criminale, W. O. & Kovasznay, L. S. G. 1962 J. Fluid Mech. 14, 59.
Davis, R. T. 1984 AIAA Paper No. 84–1614 (presented June 1984, Snowmass, Colorado).
Duck, P. W. 1985 J. Fluid Mech. 160, 465.
Fasel, H. 1984 In Proc. Symp. on Turb. & Chaotic Phen. in Fluids, Kyoto, Japan (ed. T. Tatsumi). Elsevier.
Gajjar, J. & Smith, F. T. 1985 J. Fluid Mech. 157, 53.
Gaster, M. 1984 In Proc. Symp. on Turb. & Chaotic Phen. in Fluids, Kyoto, Japan (ed. T. Tatsumi). Elsevier. See also Transition and Turbulence (ed. R. E. Meyer), 1981, p. 95. Academic.
Gatski, T. B. 1983 NASA Tech. Paper 2245 (see also Proc. R. Soc. Lond. A 397, 1985, 397).
Hastings, S. & McLeod, J. 1978 MRC Rep. 1861.
Herbert, T. 1984 AIAA Paper No. 84–0009 (presented January 1984, Reno, Nevada).
Hocking, L. M. & Stewartson, K. 1972 Proc. R. Soc. Lond. A 326, 289.
Huppert, H. E. & Moore, D. R. 1976 J. Fluid Mech. 78, 821.
Klebanoff, P. S., Tidstrom, D. K. & Sargent, L. M. 1962 J. Fluid Mech. 12, 1.
Kogelman, S. & DiPrima, R. C. 1970 Phys. Fluids 13, 1.
Kuramoto, Y. 1978 Prog. Theor. Phys. Suppl. No. 64, p. 346.
Lange, C. G. & Newell, A. C. 1974 SIAM J. Appl. Maths 27, 441.
Maslowe, S. A. 1981 Hydrodynamic Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. R. Gollub), Chap. 7. Springer.
Messiter, A. F. 1983 Trans. ASME 50, 1104.
Moon, H. T., Huerre, P. & Redekopp, L. G. 1982 Phys. Rev. Lett. 49, 458.
Nozaki, K. & Bekki, N. 1983 Phys. Rev. Lett. 51, 2171.
Ryzhov, O. S. & Zhuk, V. I. 1980 J. Méc. 19, 561.
Saric, W. S., Kozlov, V. V. & Levchenko, V. Ya. 1984 AIAA Paper No. 84–0007 (presented January 1984, Reno, Nevada).
Smith, F. T. 1979a Proc. R. Soc. Lond. A 366, 91.
Smith, F. T. 1979b Proc. R. Soc. Lond. A 368, 573 (see also Proc. R. Soc. Lond. A 371, 439).
Smith, F. T. 1984 AIAA Paper No. 84–1582 (presented June 1984, Snowmass, Colorado).
Smith, F. T. 1985 In Proc. Symp. on Stability of Spatially-Varying and Time-Dependent Flows, NASA Langley Res. Center, Hampton, VA, August 19–20, 1985. Also Utd. Tech. Res. Ceni. Rep. UTRC-85–55.
Smith, F. T. 1986 Ann. Rev. Fluid Mech. 18, 197.
Smith, F. T. & Bodonyi, R. J. 1985 Aeronaut. J. paper no. 1313, June/July, p. 205.
Smith, F. T. & Burggraf, O. R. 1985 Proc. R. Soc. Lond. A 399, 25.
Smith, F. T. & Merkin, J. H. 1982 Computers & Fluids 10, 7.
Smith, F. T., Papageorgiou, D. & Elliott, J. W. 1984 J. Fluid Mech. 146, 313.
Stewartson, K. & Stuart, J. T. 1971 J. Fluid Mech. 48, 529.
Stuart, J. T. & DiPrima, R. C. 1978 Proc. R. Soc. Lond. A 362, 27.
Tutty, O. R. & Cowley, S. J. 1986 J. Fluid Mech. (to appear).
Veldman, A. E. P. & Dijkstra, D. 1980 In Proc. 7th Intl Conf. Num. maths. Fluid Dyn., Stanford, CA.
Walker, J. D. A. & Abbott, D. E. 1977 In Turbulence in Internal Flows (ed. S. N. B. Murthy), p. 131. Hemisphere.
Walker, J. D. A. & Scharnhorst, R. K. 1977 In Recent Advances in Engineering Science (ed. G. C. Sih), p. 541. University Press, Bethlehem, Penn.
Wygnanski, I., Sokolov, M. & Friedman, D. 1976 J. Fluid Mech. 78, 785.