Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T04:17:06.316Z Has data issue: false hasContentIssue false

Turbulent mixing in a pulsed plasma-jet exhaust

Published online by Cambridge University Press:  20 April 2006

D. R. Topham
Affiliation:
Institute of Ocean Sciences, P.O. Box 6000, Sidney, British Columbia, Canada V8L 4B2
R. M. Clements
Affiliation:
Department of Physics, University of Victoria, British Columbia, Canada V8W 2Y2
P. R. Smy
Affiliation:
Department of Electrical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G7

Abstract

High-speed schlieren cinéphotography of the firing of a high-energy plasma-jet igniter reveal turbulent structures similar in appearance to laboratory models of thermals or turbulent puffs. Measurements of the growth rates of these features together with those of their impulse and thermal energy confirm this similarity. A simple model based on the entrainment assumption gives a good description of the motion of the element and also of the decay of the internal temperature.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carleton, F. B., Vince, I. M. & Weinberg, F. J. 1982 Energy and radical losses from plasma jet igniters to solid surfaces. In Proc. 19th Symp. (Intl) on Combustion, pp. 15231531. Combustion Institute.
Cetegen, B., Teichman, K. Y., Weihberg, F. J. & Oppenheim, A. K. 1980 Performance of a plasma jet igniter. SAE Paper 800042.Google Scholar
Clements, R. M., Smy, P. R & Dale, J. D. 1981 An experimental study of the ejection mechanism for typical plasma jet igniters. Combust. Flame 42, 287295.Google Scholar
Clements, R. M., Smy, P. R., Topham, D., Vince, I. M., Vovelle, C. & Weinberg, F. J. 1983 Chemical activity and transport processes in the vicinity of a plasma jet igniter. Combust. Flame (submitted).Google Scholar
Escudier, M. P. & Maxworthy, T. 1973 On the motion of thermals. J. Fluid Mech. 61, 541552.Google Scholar
Grant, J. F., marram, E. P. & McIlwain, M. E. 1983 Optimization of plasma jet ignition properties: ignition of lean-quiescent mixtures of propane. Combust. Sci. Tech. 30, 171184.Google Scholar
Grigg, H. R. & Stewart, R. W. 1963 Turbulent diffusion in a stratified fluid. J. Fluid Mech. 15, 174186.Google Scholar
Hopkins, D. F. & Robertson, J. M. 1967 Two-dimensional incompressible fluid jet penetration. J. Fluid Mech. 29, 273287.Google Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.Google Scholar
Oved, Y., Millinazzo, F., Clements, R. M. & Smy, P. R. 1979 Blast waves produced by a time-dependent energy source. AIAA J. 17, 601605.Google Scholar
Richards, J. M. 1965 Puff motions in unstratified surroundings. J. Fluid Mech. 21, 97106.Google Scholar
Scorer, R. S. 1978 Environmental Aerodynamics. Wiley.
Smy, P. R., Clements, R. M., Simeoni, D. & Topham, D. R. 1982 Plasma expulsion from the plasma jet igniter. J. Phys. D: Appl. Phys. 15, 22272239Google Scholar
Smy, P. R., Clements, R. M., Dale, J. D., Simeoni, D. & Topham, D. R. 1983 Efficiency and erosion characteristics of plasma jet igniters. J. Phys. D: Appl. Phys. 16, 783791.Google Scholar
Topham, D. R., Smy, P. R. & Clements, R. M. 1975 An investigation of a coaxial spark igniter with emphasis on its practical use. Combust. Flame 25, 187195.Google Scholar
Topham, D. R., Zhang, J. X., Clements, R. M. & Smy, P. R. 1982 Turbulent mixing induced by a high-energy ignition device. J. Phys. D: Appl. Phys. 15, L6567.Google Scholar
Turner, J. S. 1964 The flow into an expanding spherical vortex. J. Fluid Mech. 18, 195208.Google Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.
Zhang, J. X., Clements, R. M. & Smy, P. R. 1983 An experimental investigation of the effect of a plasma jet on a freely expanding methane—air flame. Combust. Flame 50, 99106.Google Scholar