Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T02:16:23.981Z Has data issue: false hasContentIssue false

The turbulent bubble break-up cascade. Part 2. Numerical simulations of breaking waves

Published online by Cambridge University Press:  16 February 2021

Wai Hong Ronald Chan
Affiliation:
Center for Turbulence Research (CTR), Stanford University, Stanford, CA94305, USA
Perry L. Johnson
Affiliation:
Center for Turbulence Research (CTR), Stanford University, Stanford, CA94305, USA The Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA92697, USA
Parviz Moin*
Affiliation:
Center for Turbulence Research (CTR), Stanford University, Stanford, CA94305, USA
Javier Urzay
Affiliation:
Center for Turbulence Research (CTR), Stanford University, Stanford, CA94305, USA
*
Email address for correspondence: [email protected]

Abstract

Breaking waves generate a distribution of bubble sizes that evolves over time. Knowledge of how this distribution evolves is of practical importance for maritime and climate studies. The analytical framework developed in Part 1 (Chan, Johnson & Moin, J. Fluid Mech., vol. 912, 2021, A42) examined how this evolution is governed by the bubble-mass flux from large- to small-bubble sizes which depends on the rate of break-up events and the distribution of child bubble sizes. These statistics are measured in Part 2 as ensemble-averaged functions of time by simulating ensembles of breaking waves, and identifying and tracking individual bubbles and their break-up events. The large-scale break-up dynamics is seen to be statistically unsteady, and two intervals with distinct characteristics were identified. In the first interval, the dissipation rate and bubble-mass flux are quasi-steady, and the theoretical analysis of Part 1 is supported by all observed statistics, including the expected $-10/3$ power-law exponent for the super-Hinze-scale size distribution. Strong locality is observed in the corresponding bubble-mass flux, supporting the presence of a super-Hinze-scale break-up cascade. In the second interval, the dissipation rate decays, and the bubble-mass flux increases as small- and intermediate-sized bubbles become more populous. This flux remains strongly local with cascade-like behaviour, but the dominant power-law exponent for the size distribution increases to $-8/3$ as small bubbles are also depleted more quickly. This suggests the emergence of different physical mechanisms during different phases of the breaking-wave evolution, although size-local break-up remains a dominant theme. Parts 1 and 2 present an analytical toolkit for population balance analysis in two-phase flows.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, Y.C., Terray, E.A., Donelan, M.A., Hwang, P.A., Williams, A.J. III, Drennan, W.M., Kahma, K.K. & Kitaigorodskii, S.A. 1992 Enhanced dissipation of kinetic energy beneath surface waves. Nature 359, 219220.CrossRefGoogle Scholar
Atkinson, L.P. 1973 Effect of air bubble solution on air-sea gas exchange. J. Geophys. Res. 78 (6), 962968.CrossRefGoogle Scholar
Babanin, A.V., Chalikov, D., Young, I.R. & Savelyev, I. 2010 Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water. J. Fluid Mech. 644, 433463.CrossRefGoogle Scholar
Blanchard, D.C. & Syzdek, L. 1970 Mechanism for the water-to-air transfer and concentration of bacteria. Science 170 (3958), 626628.CrossRefGoogle ScholarPubMed
Blanchard, D.C. & Woodcock, A.H. 1957 Bubble formation and modification in the sea and its meteorological significance. Tellus 9, 145158.CrossRefGoogle Scholar
Blenkinsopp, C.E. & Chaplin, J.R. 2007 Void fraction measurements in breaking waves. Proc. R. Soc. Lond. A 463, 31513170.Google Scholar
Blenkinsopp, C.E. & Chaplin, J.R. 2010 Bubble size measurements in breaking waves using optical fiber phase detection probes. IEEE J. Ocean Engng 35, 388401.CrossRefGoogle Scholar
Bonmarin, P. 1989 Geometric properties of deep-water breaking waves. J. Fluid Mech. 209, 405433.CrossRefGoogle Scholar
Bravo, L., Kim, D., Ham, F. & Kerner, K. 2018 a High fidelity simulations of primary breakup and vaporization of liquid jet in cross flow. AIAA Paper 2018-4683.CrossRefGoogle Scholar
Bravo, L., Kim, D., Ham, F., Matusik, K.E., Duke, D.J., Kastengren, A.L., Swantek, A.B. & Powell, C.F. 2016 Numerical investigation of liquid jet breakup and droplet statistics with comparison to X-ray radiography. AIAA Paper 2016-5096.CrossRefGoogle Scholar
Bravo, L., Kim, D., Ham, F., Powell, C. & Kastengren, A. 2019 Effects of fuel viscosity on the primary breakup dynamics of a high-speed liquid jet with comparison to X-ray radiography. Proc. Combust. Inst. 37, 32453253.CrossRefGoogle Scholar
Bravo, L., Kim, D., Ham, F. & Su, S. 2018 b Computational study of atomization and fuel drop size distributions in high-speed primary breakup. Atomiz. Sprays 28 (4), 321344.CrossRefGoogle Scholar
Bravo, L., Kim, D., Tess, M., Kurman, M., Ham, F. & Kweon, C. 2015 High resolution numerical simulations of primary atomization in diesel sprays with single component reference fuels. In Proceedings of the ILASS Americas 27th Annual Conference on Liquid Atomization and Spray Systems. Institute for Liquid Atomization and Spray Systems, North and South America.Google Scholar
Cardesa, J.I., Vela-Martín, A. & Jimenéz, J. 2017 The turbulent cascade in five dimensions. Science 357, 782784.CrossRefGoogle ScholarPubMed
Castro, A.M., Li, J. & Carrica, P.M. 2016 A mechanistic model of bubble entrainment in turbulent free surface flows. Intl J. Multiphase Flow 86, 3555.CrossRefGoogle Scholar
Chan, W.H.R. 2020 The bubble breakup cascade in turbulent breaking waves and its implications on subgrid-scale modeling. PhD thesis, Stanford University.Google Scholar
Chan, W.H.R., Dodd, M.S., Johnson, P.L., Urzay, J. & Moin, P. 2018 a Formation and dynamics of bubbles generated in breaking waves: Part I. Algorithms for the identification of bubbles and breakup/coalescence events. In Center for Turbulence Research Annual Research Briefs, pp. 3–20. Stanford University.Google Scholar
Chan, W.H.R., Dodd, M.S., Johnson, P.L., Urzay, J. & Moin, P. 2018 b Formation and dynamics of bubbles generated in breaking waves: Part II. The evolution of the bubble size distribution and breakup/coalescence statistics. In Center for Turbulence Research Annual Research Briefs, pp. 21–34. Stanford University.Google Scholar
Chan, W.H.R., Johnson, P.L. & Moin, P. 2021 The turbulent bubble break-up cascade. Part 1. Theoretical developments. J. Fluid Mech. 912, A42.CrossRefGoogle Scholar
Chan, W.H.R., Mirjalili, S., Jain, S.S., Urzay, J., Mani, A. & Moin, P. 2019 Birth of microbubbles in turbulent breaking waves. Phys. Rev. Fluids 4, 100508.CrossRefGoogle Scholar
Chan, W.H.R., Urzay, J. & Moin, P. 2018 c Subgrid-scale modeling for microbubble generation amid colliding water surfaces. In Proceedings of the 32nd Symposium on Naval Hydrodynamics. U.S. Office of Naval Research (ONR) and the Institute for Fluid Dynamics and Ship Theory of the Hamburg University of Technology (TUHH).Google Scholar
Chen, G., Kharif, C., Zaleski, S. & Li, J. 1999 Two-dimensional Navier–Stokes simulation of breaking waves. Phys. Fluids 11 (1), 121133.CrossRefGoogle Scholar
Crook, J.A., Jackson, L.S. & Forster, P.M. 2016 Can increasing albedo of existing ship wakes reduce climate change? J. Geophys. Res. Atmos. 121, 15491558.CrossRefGoogle Scholar
Cummins, S.J., Francois, M.M. & Kothe, D.B. 2005 Estimating curvature from volume fractions. Comput. Struct. 83, 425434.CrossRefGoogle Scholar
Czerski, H. 2017 Behold the bubbly ocean. Phys. World 30 (11), 3438.CrossRefGoogle Scholar
Czerski, H. & Deane, G.B. 2010 Contributions to the acoustic excitation of bubbles released from a nozzle. J. Acoust. Soc. Am. 128 (5), 26252634.CrossRefGoogle Scholar
Deane, G.B. 1997 Sound generation and air entrainment by breaking waves in the surf zone. J. Acoust. Soc. Am. 102, 26712689.CrossRefGoogle Scholar
Deane, G.B. 2016 The performance of high-frequency Doppler sonars in actively breaking wave crests. IEEE J. Ocean Engng 41 (4), 10281034.CrossRefGoogle Scholar
Deane, G.B., Stokes, D. & Callaghan, A.H. 2016 a Turbulence in breaking waves. Phys. Today 69, 8687.CrossRefGoogle Scholar
Deane, G.B. & Stokes, M.D. 2002 Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 839844.CrossRefGoogle ScholarPubMed
Deane, G.B., Stokes, M.D. & Callaghan, A.H. 2016 b The saturation of fluid turbulence in breaking laboratory waves and implications for whitecaps. J. Phys. Oceanogr. 46, 975992.CrossRefGoogle Scholar
Deike, L., Melville, W.K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.CrossRefGoogle Scholar
Deike, L., Popinet, S. & Melville, W.K. 2015 Capillary effects on wave breaking. J. Fluid Mech. 769, 541569.CrossRefGoogle Scholar
Dodd, M.S. & Jofre, L. 2019 Small-scale flow topologies in decaying isotropic turbulence laden with finite-size droplets. Phys. Rev. Fluids 4, 064303.CrossRefGoogle Scholar
Drazen, D.A., Melville, W.K. & Lenain, L. 2008 Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech. 611, 307332.CrossRefGoogle Scholar
Duineveld, P.C. 1998 Bouncing and coalescence of bubble pairs rising at high Reynolds number in pure water or aqueous surfactant solutions. In In Fascination of Fluid Dynamics, 1st edn (ed. A. Biesheuvel & G.J.F. van Heijst), pp. 409–439. Kluwer Academic Publishers.CrossRefGoogle Scholar
Emerson, S. & Bushinsky, S. 2016 The role of bubbles during air-sea gas exchange. J. Geophys. Res. Oceans 121, 43604376.CrossRefGoogle Scholar
Eyink, G.L. 2005 Locality of turbulent cascades. Physica D 207, 91116.CrossRefGoogle Scholar
Farmer, D.M., Deane, G.B. & Vagle, S. 2001 The influence of bubble clouds on acoustic propagation in the surf zone. IEEE J. Ocean Engng 26, 113124.CrossRefGoogle Scholar
Farmer, D.M. & Lemon, D.D. 1984 The influence of bubbles on ambient noise in the ocean at high wind speeds. J. Phys. Oceanogr. 14 (11), 17621778.2.0.CO;2>CrossRefGoogle Scholar
Filippov, A.F. 1961 On the distribution of the sizes of particles which undergo splitting. Theory Prob. Applics. 6, 275294.CrossRefGoogle Scholar
Fox, F.E. & Herzfeld, K.F. 1954 Gas bubbles with organic skin as cavitation nuclei. J. Acoust. Soc. Am. 26 (6), 984989.CrossRefGoogle Scholar
Francois, M.M., Cummins, S.J., Dendy, E.D., Kothe, D.B., Sicilian, J.M. & Williams, M.W. 2006 A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys. 213, 141173.CrossRefGoogle Scholar
Garrett, C., Li, M. & Farmer, D. 2000 The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 30, 21632171.2.0.CO;2>CrossRefGoogle Scholar
Garrettson, G.A. 1973 Bubble transport theory with application to the upper ocean. J. Fluid Mech. 59, 187206.CrossRefGoogle Scholar
Gemmrich, J.R. 2010 Strong turbulence in the wave crest region. J. Phys. Oceanogr. 40, 583595.CrossRefGoogle Scholar
Gemmrich, J.R. & Farmer, D.M. 2004 Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr. 34, 10671086.2.0.CO;2>CrossRefGoogle Scholar
Hall, M.V. 1989 A comprehensive model of wind-generated bubbles in the ocean and predictions of the effects on sound propagation at frequencies up to 40 kHz. J. Acoust. Soc. Am. 86, 11031117.CrossRefGoogle Scholar
Ham, F., Kim, D., Bose, S., Le, H. & Herrmann, M. 2014 Simulation of liquid fuel atomization by a complex high-shear swirling injector. In Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. The American Society of Mechanical Engineers.CrossRefGoogle Scholar
Hebert, D.A., Schmidt, D.P., Knaus, D.A., Phillips, S. & Magari, P.J. 2008 Parallel VOF spray drop identification in an unstructured grid. In Proceedings of the ILASS Americas 21st Annual Conference on Liquid Atomization and Spray Systems. Institute for Liquid Atomization and Spray Systems, North and South America.Google Scholar
Herrmann, M. 2008 A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J. Comput. Phys. 227, 26742706.CrossRefGoogle Scholar
Herrmann, M. 2010 A parallel Eulerian interface tracking/Lagrangian point particle multi-scale coupling procedure. J. Comput. Phys. 229, 745759.CrossRefGoogle Scholar
Hinze, J.O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1, 289295.CrossRefGoogle Scholar
Iafrati, A. 2009 Numerical study of the effects of the breaking intensity on wave breaking flows. J. Fluid Mech. 622, 371411.CrossRefGoogle Scholar
Iafrati, A. 2011 Energy dissipation mechanisms in wave breaking processes: spilling and highly aerated plunging breaking events. J. Geophys. Res. Oceans 116, C07024.CrossRefGoogle Scholar
Ivey, C.B. & Moin, P. 2017 Conservative and bounded volume-of-fluid advection on unstructured grids. J. Comput. Phys. 350, 387419.CrossRefGoogle Scholar
Johnson, B.D. & Cooke, R.C. 1979 Bubble populations and spectra in coastal water: a photographic approach. J. Geophys. Res. Oceans 84 (C7), 37613766.CrossRefGoogle Scholar
Johnson, B.D. & Cooke, R.C. 1980 Organic particle and aggregate formation resulting from the dissolution of bubbles in seawater. Limnol. Oceanogr. 25 (4), 653661.CrossRefGoogle Scholar
Johnson, B.D. & Wangersky, P.J. 1987 Microbubbles: stabilization by monolayers of adsorbed particles. J. Geophys. Res. Oceans 92 (C13), 1464114647.CrossRefGoogle Scholar
Kanwisher, J. 1963 Effect of wind on $\textrm {CO}_{2}$ exchange across the sea surface. J. Geophys. Res. 68 (13), 39213927.CrossRefGoogle Scholar
Kiger, K.T. & Duncan, J.H. 2012 Air-entrainment mechanisms in plunging jets and breaking waves. Annu. Rev. Fluid Mech. 44, 563596.CrossRefGoogle Scholar
Kim, D., Ham, F., Bose, S., Le, H., Herrmann, M., Li, X., Soteriou, M.C. & Kim, W. 2014 High-fidelity simulation of atomization in a gas turbine injector high shear nozzle. In Proceedings of the ILASS Americas 26th Annual Conference on Liquid Atomization and Spray Systems. Institute for Liquid Atomization and Spray Systems, North and South America.Google Scholar
Kitaigorodskii, S.A. 1983 On the theory of the equilibrium range in the spectrum of wind-generated gravity waves. J. Phys. Oceanogr. 13, 816827.2.0.CO;2>CrossRefGoogle Scholar
Kitaigorodskii, S.A., Donelan, M.A., Lumley, J.L. & Terray, E.A. 1983 Wave-turbulence interactions in the upper ocean. Part II: statistical characteristics of wave and turbulent components of the random velocity field in the marine surface layer. J. Phys. Oceanogr. 13, 19881999.2.0.CO;2>CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Kolmogorov, A.N. 1949 On the breakage of drops in a turbulent flow. Dokl. Akad. Nauk SSSR 66, 825828.Google Scholar
Kolmogorov, A.N. 1962 A refinement of previous hypotheses concerning the local structure of turublence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.CrossRefGoogle Scholar
Lamarre, E. & Melville, W.K. 1994 Void-fraction measurements and sound-speed fields in bubble plumes generated by breaking waves. J. Acoust. Soc. Am. 95, 13171328.CrossRefGoogle Scholar
Lehr, F., Millies, M. & Mewes, D. 2002 Bubble-size distributions and flow fields in bubble columns. AIChE J. 48, 24262443.CrossRefGoogle Scholar
Lim, H.-J., Chang, K.-A., Huang, Z.-C. & Na, B. 2015 Experimental study on plunging breaking waves in deep water. J. Geophys. Res. Oceans 120, 20072049.CrossRefGoogle Scholar
Loewen, M.R. & Melville, W.K. 1991 Microwave backscatter and acoustic radiation from breaking waves. J. Fluid Mech. 224, 601623.CrossRefGoogle Scholar
Loewen, M.R. & Melville, W.K. 1994 An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves. J. Acoust. Soc. Am. 95, 13291343.CrossRefGoogle Scholar
Loewen, M.R., O'Dor, M.A. & Skafel, M.G. 1996 Bubbles generated by mechanically generated breaking waves. J. Geophys. Res. Oceans 101 (C9), 2075920769.CrossRefGoogle Scholar
Martínez-Bazán, C., Montañés, J.L. & Lasheras, J.C. 1999 On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 401, 157182.CrossRefGoogle Scholar
Masnadi, N., Erinin, M.A., Washuta, N., Nasiri, F., Balaras, E. & Duncan, J.H. 2020 Air entrainment and surface fluctuations in a turbulent ship hull boundary layer. J. Ship Res. 64 (2), 185201.CrossRefGoogle Scholar
Medwin, H. 1970 In situ acoustic measurements of bubble populations in coastal ocean waters. J. Geophys. Res. 75 (3), 599611.CrossRefGoogle Scholar
Melville, W.K. 1994 Energy dissipation by breaking waves. J. Phys. Oceanogr. 24, 20412049.2.0.CO;2>CrossRefGoogle Scholar
Melville, W.K. 1996 The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech. 28, 279321.CrossRefGoogle Scholar
Mirjalili, S., Chan, W.H.R. & Mani, A. 2018 High fidelity simulations of micro-bubble shedding from retracting thin gas films in the context of liquid-liquid impact. In Proceedings of the 32nd Symposium on Naval Hydrodynamics. U.S. Office of Naval Research (ONR) and the Institute for Fluid Dynamics and Ship Theory of the Hamburg University of Technology (TUHH).Google Scholar
Mirjalili, S., Ivey, C.B. & Mani, A. 2019 Comparison between the diffuse interface and volume of fluid methods for simulating two-phase flows. Intl J. Multiphase Flow 116, 221238.CrossRefGoogle Scholar
Mirjalili, S. & Mani, A. 2020 Transitional stages of thin air film entrapment in drop-pool impact events. J. Fluid Mech. 901, A14.CrossRefGoogle Scholar
Mortazavi, M. 2016 Air entrainment and micro-bubble generation by turbulent breaking waves. PhD thesis, Stanford University.Google Scholar
Mortazavi, M., Le Chenadec, V., Moin, P. & Mani, A. 2016 Direct numerical simulation of a turbulent hydraulic jump: turbulence statistics and air entrainment. J. Fluid Mech. 797, 6094.CrossRefGoogle Scholar
Na, B., Chang, K.-A., Huang, Z.-C. & Lim, H.-J. 2016 Turbulent flow field and air entrainment in laboratory plunging breaking waves. J. Geophys. Res. Oceans 121, 29803009.CrossRefGoogle Scholar
Onsager, L. 1945 The distribution of energy in turbulence. Phys. Rev. 68 (11–12), 286.Google Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Prosperetti, A. 1988 Bubble dynamics in oceanic ambient noise. In Sea Surface Sound: Natural Mechanisms of Surface-Generated Noise in the Ocean, 1st edn (ed. B.R. Kerman), pp. 151–171. Kluwer Academic Publishers.CrossRefGoogle Scholar
Qi, Y., Masuk, A.U.M. & Ni, R. 2020 Towards a model of bubble breakup in turbulence through experimental constraints. Intl J. Multiphase Flow 132, 103397.CrossRefGoogle Scholar
Rapp, R.J. & Melville, W.K. 1990 Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond. A 331, 735808.Google Scholar
Reed, A.M. & Milgram, J.H. 2002 Ship wakes and their radar images. Annu. Rev. Fluid Mech. 34, 469502.CrossRefGoogle Scholar
Richardson, L.F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.Google Scholar
Rodríguez-Rodríguez, J., Gordillo, J.M. & Martínez-Bazán, C. 2006 Breakup time and morphology of drops and bubbles in a high-Reynolds-number flow. J. Fluid Mech. 548, 6986.CrossRefGoogle Scholar
Rojas, G. & Loewen, M.R. 2010 Void fraction measurements beneath plunging and spilling breaking waves. J. Geophys. Res. Oceans 115, C08001.CrossRefGoogle Scholar
Rubel, C. & Owkes, M. 2019 Extraction of droplet genealogies from high-fidelity atomization strategies. Atomiz. Sprays 29, 709739.CrossRefGoogle Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567603.CrossRefGoogle Scholar
Schulkin, M. 1968 Surface-coupled losses in surface sound channels. J. Acoust. Soc. Am. 44, 11521154.CrossRefGoogle Scholar
Schulkin, M. 1969 Surface-coupled losses in surface sound channel propagation. II. J. Acoust. Soc. Am. 44, 11521154.CrossRefGoogle Scholar
Seitz, R. 2011 Bright water: hydrosols, water conservation and climate change. J. Clim. 105, 365381.CrossRefGoogle Scholar
Sreenivasan, K.R. 1991 Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23, 539600.CrossRefGoogle Scholar
Sreenivasan, K.R. & Meneveau, C. 1986 The fractal facets of turbulence. J. Fluid Mech. 173, 357386.CrossRefGoogle Scholar
Sreenivasan, K.R., Ramshankar, R. & Meneveau, C. 1989 Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421, 79108.Google Scholar
Stanic, S., Caruthers, J.W., Goodman, R.R., Kennedy, E. & Brown, R.A. 2009 Attenuation measurements across surface-ship wakes and computed bubble distributions and void fractions. IEEE J. Ocean Engng 34, 8392.CrossRefGoogle Scholar
Stefan, R.L. & Szeri, A.J. 1999 Surfactant scavenging and surface deposition by rising bubbles. J. Colloid Interface Sci. 212, 113.CrossRefGoogle ScholarPubMed
Stramski, D. 1994 Gas microbubbles: an assessment of their significance to light scattering in quiescent seas. Proc. SPIE 2258, 704710.CrossRefGoogle Scholar
Stramski, D., Boss, E., Bogucki, D. & Voss, K.J. 2004 The role of seawater constituents in light backscattering in the ocean. Prog. Oceanogr. 61 (1), 2756.CrossRefGoogle Scholar
Strasberg, M. 1956 Gas bubbles as sources of sound in liquids. J. Acoust. Soc. Am. 28 (1), 2026.CrossRefGoogle Scholar
Takagi, S. & Matsumoto, Y. 2011 Surfactant effects on bubble motion and bubbly flows. Annu. Rev. Fluid Mech. 43, 615636.CrossRefGoogle Scholar
Tavakolinejad, M. 2010 Air bubble entrainment by breaking bow waves simulated by a ${2\textrm {D}+\textrm {T}}$ technique. PhD thesis, University of Maryland, College Park.Google Scholar
Terray, E.A., Donelan, M.A., Agrawal, Y.C., Drennan, W.M., Kahma, K.K., Williams, A.J. III, Hwang, P.A. & Kitaigorodskii, S.A. 1996 Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr. 26, 792807.2.0.CO;2>CrossRefGoogle Scholar
Terrill, E.J., Melville, W.K. & Stramski, D. 2001 Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean. J. Geophys. Res. Oceans 106 (C8), 1681516823.CrossRefGoogle Scholar
Thomson, J., Schwendeman, M.S., Zippel, S.F., Moghimi, S., Gemmrich, J. & Rogers, W.E. 2016 Wave-breaking turbulence in the ocean surface layer. J. Phys. Oceanogr. 46, 18571870.CrossRefGoogle Scholar
Thorpe, S.A. 1982 On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air-sea gas transfer. Phil. Trans. R. Soc. Lond. A 304, 155210.Google Scholar
Thorpe, S.A. 1992 Bubble clouds and the dynamics of the upper ocean. Q. J. R. Meteorol. Soc. 118, 122.CrossRefGoogle Scholar
Thorpe, S.A. 1995 Dynamical processes of transfer at the sea surface. Prog. Oceanogr. 35, 315352.CrossRefGoogle Scholar
Tomar, G., Fuster, D., Zaleski, S. & Popinet, S. 2010 Multiscale simulations of primary atomization. Comput. Fluids 39, 18641874.CrossRefGoogle Scholar
Trevorrow, M.V., Vagle, S. & Farmer, D.M. 1994 Acoustical measurements of microbubbles within ship wakes. J. Acoust. Soc. Am. 95, 19221930.CrossRefGoogle Scholar
Turcotte, D.L. 1986 Fractals and fragmentation. J. Geophys. Res. Solid Earth 91, 19211926.CrossRefGoogle Scholar
Turner, W.R. 1961 Microbubble persistence in fresh water. J. Acoust. Soc. Am. 33 (9), 12231233.CrossRefGoogle Scholar
Twardowski, M., Zhang, X., Vagle, S., Sullivan, J., Freeman, S., Czerski, H., You, Y., Bi, L. & Kattawar, G. 2012 The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations. J. Geophys. Res. Oceans 117, C00H17.CrossRefGoogle Scholar
Vagle, S. & Farmer, D.M. 1998 A comparison of four methods for bubble size and void fraction measurements. IEEE J. Ocean Engng 23 (3), 211222.CrossRefGoogle Scholar
Vassilicos, J.C. & Hunt, J.C.R. 1991 Fractal dimensions and spectra of interfaces with application to turbulence. Proc. R. Soc. Lond. A 435, 505534.Google Scholar
Veron, F. 2015 Ocean spray. Annu. Rev. Fluid Mech. 47, 507538.CrossRefGoogle Scholar
Wang, Z., Yang, J. & Stern, F. 2016 High-fidelity simulations of bubble, droplet and spray formation in breaking waves. J. Fluid Mech. 792, 307327.CrossRefGoogle Scholar
Wanninkhof, R., Asher, W.E., Ho, D.T., Sweeney, C. & McGillis, W.R. 2009 Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1, 213244.CrossRefGoogle ScholarPubMed
Weber, M.E., Blanchard, D.C. & Syzdek, L. 1983 The mechanism of scavenging of waterborne bacteria by a rising bubble. Limnol. Oceanogr. 28 (1), 101105.CrossRefGoogle Scholar
Woolf, D.K. 1993 Bubbles and the air-sea transfer velocity of gases. Atmos. Ocean 31 (4), 517540.CrossRefGoogle Scholar
Yu, X., Hendrickson, K., Campbell, B.K. & Yue, D.K.P. 2019 Numerical investigation of shear-flow free-surface turbulence and air entrainment at large froude and weber numbers. J. Fluid Mech. 880, 209238.CrossRefGoogle Scholar
Yu, X., Hendrickson, K. & Yue, D.K.P. 2020 Scale separation and dependence of entrainment bubble-size distribution in free-surface turbulence. J. Fluid Mech. 885, R2.CrossRefGoogle Scholar
Zhang, X., Lewis, M., Bissett, W.P., Johnson, B. & Kohler, D. 2004 Optical influence of ship wakes. Appl. Opt. 43, 31223132.CrossRefGoogle ScholarPubMed
Zhang, X., Lewis, M. & Johnson, B. 1998 Influence of bubbles on scattering of light in the ocean. Appl. Opt. 37, 65256536.CrossRefGoogle ScholarPubMed