Article contents
Turbulence statistics in smooth wall oscillatory boundary layer flow
Published online by Cambridge University Press: 18 June 2018
Abstract
Turbulence characteristics of an asymmetric oscillatory boundary layer flow are analysed through two-component laser-Doppler measurements carried out in a large oscillatory flow tunnel and direct numerical simulation (DNS). Five different Reynolds numbers, $R_{\unicode[STIX]{x1D6FF}}$, in the range 846–2057 have been investigated experimentally, where $R_{\unicode[STIX]{x1D6FF}}=\tilde{u} _{0max}\unicode[STIX]{x1D6FF}/\unicode[STIX]{x1D708}$ with $\tilde{u} _{0max}$ the maximum oscillatory velocity in the irrotational region, $\unicode[STIX]{x1D6FF}$ the Stokes length and $\unicode[STIX]{x1D708}$ the fluid kinematic viscosity. DNS has been carried out for the lowest three $R_{\unicode[STIX]{x1D6FF}}$ equal to 846, 1155 and 1475. Both experimental and numerical results show that the flow statistics increase during accelerating phases of the flow and especially at times of transition to turbulent flow. Once turbulence is fully developed, the near-wall statistics remain almost constant until the late half-cycle, with values close to those reported for steady wall-bounded flows. The higher-order statistics reach large values within a normalized wall distance of approximately $y/\unicode[STIX]{x1D6FF}=0.2$ at phases corresponding to the onset of low-speed streak breaking, because of the intermittency of the velocity fluctuations at these times. In particular, the flatness of the streamwise velocity fluctuations reaches values of the order of ten, while the flatness of the wall-normal velocity fluctuations reaches values of several hundreds. Far from the wall, at locations where the vertical gradient of the streamwise velocity is zero, the skewness is approximately zero and the flatness is approximately equal to 3, representative of a normal distribution. At lower elevations the distribution of the fluctuations deviate substantially from a normal distribution, but are found to be well described by other standard theoretical probability distributions.
- Type
- JFM Papers
- Information
- Copyright
- © 2018 Cambridge University Press
References
- 13
- Cited by