Hostname: page-component-5f745c7db-96s6r Total loading time: 0 Render date: 2025-01-06T11:06:11.210Z Has data issue: true hasContentIssue false

Turbulence in electromagnetically driven Keplerian flows

Published online by Cambridge University Press:  12 August 2021

M. Vernet*
Affiliation:
Laboratoire de Physique de l'Ecole Normale Superieure, CNRS, PSL Research University, Sorbonne Universite, Universite de Paris, F-75005 Paris, France
M. Pereira
Affiliation:
Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France
S. Fauve
Affiliation:
Laboratoire de Physique de l'Ecole Normale Superieure, CNRS, PSL Research University, Sorbonne Universite, Universite de Paris, F-75005 Paris, France
C. Gissinger
Affiliation:
Laboratoire de Physique de l'Ecole Normale Superieure, CNRS, PSL Research University, Sorbonne Universite, Universite de Paris, F-75005 Paris, France Institut Universitaire de France (IUF), Paris, France
*
Email address for correspondence: [email protected]

Abstract

The flow of an electrically conducting fluid in a thin disc under the action of an azimuthal Lorentz force is studied experimentally. At small forcing, the Lorentz force is balanced by either viscosity or inertia, yielding quasi-Keplerian velocity profiles. For very large current I and moderate magnetic field B, we observe a new regime, fully turbulent, which exhibits large fluctuations and a Keplerian mean rotation profile $\varOmega \sim {\sqrt {IB}}/{r^{3/2}}$, where r is the distance from the axis. In this turbulent regime, the dynamics is typical of thin layer turbulence, characterized by a direct cascade of energy towards the small scales and an inverse cascade to large scales. Finally, at very large magnetic field, this turbulent flow bifurcates to a quasi-bidimensional turbulent flow involving the formation of a large scale condensate in the horizontal plane. These results are well understood as resulting from an instability of the Bödewadt–Hartmann layers at large Reynolds number and discussed in the framework of similar astrophysical flows.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767–769, 1101.CrossRefGoogle Scholar
Avila, M. 2012 Stability and angular-momentum transport of fluid flows between corotating cylinders. Phys. Rev. Lett. 108, 124501.CrossRefGoogle ScholarPubMed
Balbus, S.A. & Hawley, J.F. 1991 A powerful local shear instability in weakly magnetized disks. I-Linear analysis. II-Nonlinear evolution. Astrophys. J. 376, 214233.CrossRefGoogle Scholar
Baylis, J.A. 1971 Experiments on laminar flow in curved channels of square section. J. Fluid Mech. 48, 417422.CrossRefGoogle Scholar
Baylis, J.A. & Hunt, J.C.R. 1971 MHD flow in an annular channel: theory and experiment. J. Fluid Mech. 48, 423428.CrossRefGoogle Scholar
Benavides, S.J. & Alexakis, A. 2017 Critical transitions in thin layer turbulence. J. Fluid Mech. 822, 364385.CrossRefGoogle Scholar
Berhanu, M., Gallet, B., Mordant, N. & Fauve, S. 2008 Reduction of velocity fluctuations in a turbulent flow of gallium by an external magnetic field. Phys. Rev. E 78, 015302(R).CrossRefGoogle Scholar
Boisson, J., Klochko, A., Daviaud, F., Padilla, V. & Aumaitre, S. 2012 Travelling waves in a cylindrical magnetohydrodynamically forced flow. Phys. Fluids 24 (4), 044101.CrossRefGoogle Scholar
Boisson, J., Monchaux, R. & Aumaitre, S. 2017 Inertial regimes in a curved electromagnetically forced flow. J. Fluids Mech. 813, 860881.CrossRefGoogle Scholar
Celani, A., Musacchio, S. & Vincenzi, D. 2010 Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 104 (18), 184506.CrossRefGoogle ScholarPubMed
Davidson, P.A. & Potherat, A. 2002 A note on Bodewadt–Hartmann layers. Eur. J. Mech. B/Fluids 21, 545559.CrossRefGoogle Scholar
Dubrulle, B., Marie, L., Normand, C.., Richard, D., Hersant, F. & Zahn, J.-P. 2005 A hydrodynamic shear instability in stratified disks. Astron. Astrophys. 429 (1), 113.CrossRefGoogle Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.CrossRefGoogle Scholar
Fromang, S. & Lesur, G.R.J. 2019 Angular momentum transport in accretion disks: a hydrodynamical perspective. Astro Fluid 82, 391413.Google Scholar
Huisman, S.G., van Gils, D.P.M., Grossmann, S., Sun, C. & Lohse, D. 2012 Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett. 108, 024501.CrossRefGoogle ScholarPubMed
Hunt, J.C.R. 1965 Magnetohydrodynamic flow in rectangular ducts. J. Fluid Mech. 21 (4), 577590.CrossRefGoogle Scholar
Hartmann, J. & Lazarus, F. 1937 Experimental investigations on the flow of mercury in a homogeneous magnetic field. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 15 (7), 145.Google Scholar
Ji, H., Burin, M., Schartman, E. & Goodman, J. 2006 Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444 (7117), 343346.CrossRefGoogle ScholarPubMed
Khalzov, I.V., Smolyakov, A.I. & Ilgisonis, V.I. 2010 Equilibrium magnetohydrodynamic flows of liquid metals in magnetorotational instability experiments. J. Fluid Mech. 644, 257280.CrossRefGoogle Scholar
Kraichnan, J.R.H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.CrossRefGoogle Scholar
Krasnov, D.S., Zienicke, E., Zikanov, O., Boeck, T. & Thess, A. 2004 Numerical study of the instability of the Hartmann layer. J. Fluid Mech. 504, 183211.CrossRefGoogle Scholar
Lesur, G. & Longaretti, P.-Y. 2005 On the relevance of subcritical hydrodynamic turbulence to accretion disk transport. Astron. Astrophys. 444 (1), 2544.CrossRefGoogle Scholar
Lesur, G.R.J. 2021 Magnetohydrodynamics of protoplanetary discs. J. Plasma Phys. 87, 205870101.CrossRefGoogle Scholar
Lopez, J.M. & Avila, M. 2017 Boundary-layer turbulence in experiments on quasi-Keplerian flows. J. Fluid Mech. 817, 2134.CrossRefGoogle Scholar
Messadek, K. & Moreau, R. 2002 An experimental investigation of MHD quasi-two-dimensional turbulent shear flows. J. Fluid Mech. 456, 137159.CrossRefGoogle Scholar
Moffatt, K. 1961 The amplification of a weak applied magnetic field by turbulence in fluids of moderate conductivity. J. Fluid Mech. 11, 625635.CrossRefGoogle Scholar
Moresco, P. & Alboussière, T. 2004 a Experimental study of the instability of the Hartmann layer. J. Fluid Mech. 504, 167181.CrossRefGoogle Scholar
Moresco, P. & Alboussière, T. 2004 b Stability of Bödewadt–Hartmann layers. Eur. J. Mech. B/Fluids 23 (6), 851859.CrossRefGoogle Scholar
Murgatroyd, W. 1953 Experiments on magneto-hydrodynamic channel flow. Phil. Mag. 44, 13481354.CrossRefGoogle Scholar
Nelson, R.P., Gressel, O. & Umurhan, O.M. 2013 Linear and non-linear evolution of the vertical shear instability in accretion discs. Mon. Not. R. Astron. Soc. 435 (3), 26102632.CrossRefGoogle Scholar
Paoletti, M.S., van Gils, D.P.M., Dubrulle, B., Sun, C., Lohse, D. & Lathrop, D.P. 2012 Angular momentum transport and turbulence in laboratory models of keplerian flows. Astron. Astrophys. 547, A64.CrossRefGoogle Scholar
Paoletti, M.S. & Lathrop, D.P. 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.CrossRefGoogle ScholarPubMed
Potherat, A. 2007 Quasi-two-dimensional perturbations in duct flows under transverse magnetic field. Phys. Fluids 19 (7), 074104.CrossRefGoogle Scholar
Potherat, A. 2012 Three-dimensionality in quasi-two-dimensional flows: recirculations and barrel effects. Europhys. Lett. 98 (6), 64003.CrossRefGoogle Scholar
Potherat, A. & Klein, R. 2014 Why, how and when MHD turbulence at low RM becomes three-dimensional. J. Fluid Mech. 761, 168205.CrossRefGoogle Scholar
Potherat, A., Sommeria, J. & Moreau, R. 2000 An effective two-dimensional model for MHD flows with transverse magnetic field. J. Fluid Mech. 424, 75100.CrossRefGoogle Scholar
Poye, A., Agullo, O., Plihon, N., Bos, W.J.T., Desangles, V. & Bousselin, G. 2020 Scaling laws in axisymmetric magnetohydrodynamic duct flows. Phys. Rev. Fluids 5, 043701.CrossRefGoogle Scholar
Rayleigh, L. 1917 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93 (648), 148154.Google Scholar
Reddy, K.S., Fauve, S. & Gissinger, C. 2018 Instabilities of MHD flows driven by traveling magnetic fields. Phys. Rev. Fluids 3, 063703.CrossRefGoogle Scholar
Roach, A.H., Spence, E.J., Gissinger, C., Edlund, E.M., Sloboda, P., Goodman, J. & Ji, H. 2012 Observation of a free-Shercliff-layer instability in cylindrical geometry. Phys. Rev. Lett. 108, 154502.CrossRefGoogle ScholarPubMed
Sisan, D.R., Mujica, N., Tillotson, W.A., Huang, Y.-M., Dorland, W., Hassam, A.B., Antonsen, T.M. & Lathrop, D.P. 2004 Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93, 114502.CrossRefGoogle ScholarPubMed
Sommeria, J. 1986 Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech. 170, 139168.CrossRefGoogle Scholar
Sommeria, J. & Moreau, R. 1982 Why, how, and when, MHD turbulence becomes two-dimensional. J. Fluid Mech. 118, 507518.CrossRefGoogle Scholar
Stefani, F. & Gerbeth, G. 2004 MRI in Taylor–Dean flows. AIP Conf. Proc. 733, 100.CrossRefGoogle Scholar
Stefani, F., Gundrum, T., Gerbeth, G., Rudiger, G., Schultz, M., Szklarski, J. & Hollerbach, R. 2006 Experimental evidence for magnetorotational instability in a Taylor–Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502.CrossRefGoogle Scholar
Stelzer, Z., Cebron, D., Miralles, S., Vantieghem, S., Noir, J., Scarfe, P. & Jackson, A. 2015 a Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. I. Base flow. Phys. Fluids 27 (7), 077101.CrossRefGoogle Scholar
Stelzer, Z., Miralles, S., Cebron, D., Noir, J., Vantieghem, S. & Jackson, A. 2015 b Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. II. Instabilities. Phys. Fluids 27 (8), 084108.CrossRefGoogle Scholar
Tabeling, P. & Chabrerie, J.P. 1981 Magnetohydrodynamic Taylor vortex flow under a transverse pressure gradient. Phys. Fluids 24 (3), 406412.CrossRefGoogle Scholar
Velikhov, E.P., Ivanov, A.A., Zakharov, S.V., Zakharov, V.S., Livadny, A.O. & Serebrennikov, K.S. 2006 Equilibrium of current driven rotating liquid metal. Phys. Lett. A 358 (3), 216221.CrossRefGoogle Scholar
Winarto, H., Ji, H., Goodman, J., Ebrahimi, F., Gilson, E. & Wang, Y. 2020 Parameter space mapping of the Princeton magnetorotational instability experiment. Phys. Rev. E 102, 023113.CrossRefGoogle ScholarPubMed
Xia, H., Byrne, D., Falkovich, G. & Shats, M. 2011 Upscale energy transfer in thick turbulent fluid layers. Nat. Phys. 7 (4), 321324.CrossRefGoogle Scholar
Zhao, Y., Zikanov, O. & Krasnov, D. 2011 Instability of magnetohydrodynamic flow in an annular channel at high Hartmann number. Phys. Fluids 23 (8), 084103.CrossRefGoogle Scholar
Zhao, Y., Zikanov, O. & Krasnov, D. 2012 Instabilities and turbulence in magnetohydrodynamic flow in a toroidal duct prior to transition in Hartmann layers. J. Fluids Mech. 692, 288316.CrossRefGoogle Scholar