Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-16T17:25:20.819Z Has data issue: false hasContentIssue false

Trapping patterns during capillary displacements in disordered media

Published online by Cambridge University Press:  06 January 2022

Fanli Liu
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Moran Wang*
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
*
Email address for correspondence: [email protected]

Abstract

We investigate the impact of wettability distribution, pore size distribution and pore geometry on the statistical behaviour of trapping in pore-throat networks during capillary displacement. Through theoretical analyses and numerical simulations, we propose and prove that the trapping patterns, defined as the percentage and distribution of trapped elements, are determined by four dimensionless control parameters. The range of all possible trapping patterns and how the patterns are dependent on the four parameters are obtained. The results help us to understand the impact of wettability and structure on trapping behaviour in disordered media.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akai, T., Alhammadi, A.M., Blunt, M.J. & Bijeljic, B. 2019 Modeling oil recovery in mixed-wet rocks: pore-scale comparison between experiment and simulation. Transp. Porous Media 127 (2), 393414.CrossRefGoogle Scholar
Aker, E., Måløy, K.J. & Hansen, A. 2000 Viscous stabilization of 2D drainage displacements with trapping. Phys. Rev. Lett. 84 (20), 4589.CrossRefGoogle ScholarPubMed
Al-Gharbi, M.S. & Blunt, M.J. 2005 Dynamic network modeling of two-phase drainage in porous media. Phys. Rev. E 71 (1), 016308.CrossRefGoogle ScholarPubMed
Avendaño, J., Lima, N., Quevedo, A. & Carvalho, M. 2019 Effect of surface wettability on immiscible displacement in a microfluidic porous media. Energies 12 (4), 664.CrossRefGoogle Scholar
Berg, S., Cense, A.W., Jansen, E. & Bakker, K. 2010 Direct experimental evidence of wettability modification by low salinity. Petrophysics 51 (5), 314322.Google Scholar
Berg, S. & Ott, H. 2012 Stability of CO2–brine immiscible displacement. Intl J. Greenh. Gas Control 11, 188203.CrossRefGoogle Scholar
Blunt, M.J. 1998 Physically-based network modeling of multiphase flow in intermediate-wet porous media. J. Petrol. Sci. Engng 20 (3–4), 117125.CrossRefGoogle Scholar
Blunt, M.J. 2017 Multiphase Flow in Permeable Media: A Pore-scale Perspective. Cambridge University Press.CrossRefGoogle Scholar
Chandler, R., Koplik, J., Lerman, K. & Willemsen, J.F. 1982 Capillary displacement and percolation in porous media. J. Fluid Mech. 119, 249267.CrossRefGoogle Scholar
Chen, J.-D. & Wilkinson, D. 1985 Pore-scale viscous fingering in porous media. Phys. Rev. Lett. 55 (18), 1892.CrossRefGoogle ScholarPubMed
Cieplak, M. & Robbins, M.O. 1988 Dynamical transition in quasistatic fluid invasion in porous media. Phys. Rev. Lett. 60 (20), 2042.CrossRefGoogle ScholarPubMed
Esmaeilzadeh, S., Qin, Z., Riaz, A. & Tchelepi, H.A. 2020 Wettability and capillary effects: dynamics of pinch-off in unconstricted straight capillary tubes. Phys. Rev. E 102 (2), 023109.CrossRefGoogle ScholarPubMed
Gu, Q., Liu, H. & Wu, L. 2021 Preferential imbibition in a dual-permeability pore network. J. Fluid Mech. 915, A138.CrossRefGoogle Scholar
Holtzman, R. & Segre, E. 2015 Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Phys. Rev. Lett. 115 (16), 164501.CrossRefGoogle ScholarPubMed
Huppert, H.E. & Neufeld, J.A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46, 255272.CrossRefGoogle Scholar
Jadhunandan, P.P. & Morrow, N.R. 1995 Effect of wettability on waterflood recovery for crude-oil/brine/rock systems. SPE Res. Engng 10 (1), 4046.CrossRefGoogle Scholar
Lenormand, R., Touboul, E. & Zarcone, C. 1988 Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189 (1), 165187.CrossRefGoogle Scholar
Lenormand, R. & Zarcone, C. 1985 Invasion percolation in an etched network: measurement of a fractal dimension. Phys. Rev. Lett. 54 (20), 2226.CrossRefGoogle Scholar
Liu, F. & Wang, M. 2020 Review of low salinity waterflooding mechanisms: wettability alteration and its impact on oil recovery. Fuel 267, 117112.CrossRefGoogle Scholar
Måløy, K.J., Feder, J. & Jøssang, T. 1985 Viscous fingering fractals in porous media. Phys. Rev. Lett. 55 (24), 2688.CrossRefGoogle Scholar
Odier, C., Levaché, B., Santanach-Carreras, E. & Bartolo, D. 2017 Forced imbibition in porous media: a fourfold scenario. Phys. Rev. Lett. 119 (20), 208005.CrossRefGoogle ScholarPubMed
Payatakes, A.C. 1982 Dynamics of oil ganglia during immiscible displacement in water-wet porous media. Annu. Rev. Fluid Mech. 14 (1), 365393.CrossRefGoogle Scholar
Rabbani, H.S., Or, D., Liu, Y., Lai, C.-Y., Lu, N.B., Datta, S.S., Stone, H.A. & Shokri, N. 2018 Suppressing viscous fingering in structured porous media. Proc. Natl Acad. Sci. USA 115 (19), 48334838.CrossRefGoogle ScholarPubMed
Raeini, A.Q., Bijeljic, B. & Blunt, M.J. 2018 Generalized network modeling of capillary-dominated two-phase flow. Phys. Rev. E 97 (2), 023308.CrossRefGoogle ScholarPubMed
Rücker, M., Berg, S., Armstrong, R.T., Georgiadis, A., Ott, H., Schwing, A., Neiteler, R., Brussee, N., Makurat, A. & Leu, L. 2015 From connected pathway flow to ganglion dynamics. Geophys. Res. Lett. 42 (10), 38883894.CrossRefGoogle Scholar
Sahini, M. & Sahimi, M. 2003 Applications of Percolation Theory. CRC Press.Google Scholar
Sheppard, A.P., Knackstedt, M.A., Pinczewski, W.V. & Sahimi, M. 1999 Invasion percolation: new algorithms and universality classes. J. Phys. A: Math. Gen. 32 (49), L521.CrossRefGoogle Scholar
Singh, K., Jung, M., Brinkmann, M. & Seemann, R. 2019 Capillary-dominated fluid displacement in porous media. Annu. Rev. Fluid Mech. 51, 429449.CrossRefGoogle Scholar
Stauffer, D. & Aharony, A. 2018 Introduction to Percolation Theory. CRC Press.CrossRefGoogle Scholar
Taheriotaghsara, M., Bonto, M., Eftekhari, A.A. & Nick, H.M. 2020 Prediction of oil breakthrough time in modified salinity water flooding in carbonate cores. Fuel 274, 117806.CrossRefGoogle Scholar
Tran, T.Q., Neogi, P. & Bai, B. 2017 Stability of CO$_2$ displacement of an immiscible heavy oil in a reservoir. SPE J. 22 (2), 539547.CrossRefGoogle Scholar
Trojer, M., Szulczewski, M.L. & Juanes, R. 2015 Stabilizing fluid-fluid displacements in porous media through wettability alteration. Phys. Rev. Appl. 3 (5), 054008.CrossRefGoogle Scholar
Tsuji, T., Jiang, F. & Christensen, K.T. 2016 Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone. Adv. Water Resour. 95, 315.CrossRefGoogle Scholar
Valvatne, P.H. & Blunt, M.J. 2004 Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 40 (7), W07406.CrossRefGoogle Scholar
Vishnudas, R. & Chaudhuri, A. 2017 A comprehensive numerical study of immiscible and miscible viscous fingers during chemical enhanced oil recovery. Fuel 194, 480490.CrossRefGoogle Scholar
Wang, Z., Chauhan, K., Pereira, J.-M. & Gan, Y. 2019 Disorder characterization of porous media and its effect on fluid displacement. Phys. Rev. Fluids 4 (3), 034305.CrossRefGoogle Scholar
Wang, Z., Pereira, J.-M. & Gan, Y. 2020 Effect of wetting transition during multiphase displacement in porous media. Langmuir 36 (9), 24492458.CrossRefGoogle ScholarPubMed
Wang, Z., Pereira, J.-M. & Gan, Y. 2021 Effect of grain shape on quasi-static fluid-fluid displacement in porous media. Water Resour. Res. 57 (4), e2020WR029415.CrossRefGoogle Scholar
Wilkinson, D. & Willemsen, J.F. 1983 Invasion percolation: a new form of percolation theory. J. Phys. A: Math. Gen. 16 (14), 3365.CrossRefGoogle Scholar
Zhao, B., MacMinn, C.W. & Juanes, R. 2016 Wettability control on multiphase flow in patterned microfluidics. Proc. Natl Acad. Sci. USA 113 (37), 1025110256.CrossRefGoogle ScholarPubMed
Zhao, B., MacMinn, C.W., Primkulov, B.K., Chen, Y., Valocchi, A.J., Zhao, J., Kang, Q., Bruning, K., McClure, J.E. & Miller, C.T. 2019 Comprehensive comparison of pore-scale models for multiphase flow in porous media. Proc. Natl Acad. Sci. USA 116 (28), 1379913806.CrossRefGoogle ScholarPubMed
Zhao, X., Blunt, M.J. & Yao, J. 2010 Pore-scale modeling: effects of wettability on waterflood oil recovery. J. Petrol. Sci. Engng 71 (3–4), 169178.CrossRefGoogle Scholar