Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T00:21:52.399Z Has data issue: false hasContentIssue false

Transport of inertial particles in high-Reynolds-number turbulent boundary layers

Published online by Cambridge University Press:  22 September 2020

Tim Berk*
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN55455, USA St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN55414, USA
Filippo Coletti
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN55455, USA St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN55414, USA
*
Email address for correspondence: [email protected]

Abstract

We investigate the transport of size-selected particles suspended in turbulent boundary layers at friction Reynolds numbers up to $Re_\tau = 19\,000$. We use microscopic glass spheres in air, spanning a wide range of viscous Stokes numbers, $St^+ = 18\text {--}870$. These are imaged simultaneously with the flow tracers, and particle image and tracking velocimetry are used to measure the two-phase flow along a wall-normal plane in the logarithmic region. The air flow statistics are not altered by the particles at the present mass loading. In comparison to the classic equilibrium solution, the particle concentration profiles display weaker wall-normal gradients. This is shown to be an effect of particle inertia: this manifests itself through different mechanisms in different strata of the flow, and the effects on the concentration are captured by a three-layer parameterization of the profile. The particles lag the fluid across the boundary layer, with a mean slip velocity of the order of the friction velocity and increasing with particle inertia. Near the wall this lag is mainly due to the instantaneous slip of the particles relative to the surrounding fluid, while away from the wall the leading cause is the preferential sampling of low-speed fluid regions. Larger particles (in the size range of sand, as opposed to dust) display a qualitatively different behaviour, likely because of nonlinear drag effects. All considered particles oversample specific regions of the fluid flow: they favour regions of negative streamwise fluctuations, especially ejection events, and are likely to be found about the centre of strain cells with backward-leaning compressive axis and forward-leaning extensive axis. This pattern is visible for a wide range of Stokes numbers, underscoring the multi-scale nature of preferential concentration. The present findings highlight how high-Reynolds-number features of turbulent boundary layers impact the transport of suspended inertial particles, and thus are especially relevant to environmental and geophysical flows.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Mechanical and Process Engineering, ETH Zurich, Switzerland.

References

REFERENCES

Adrian, R. J., Christensen, K. T. & Liu, Z.-C. 2000 a Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29 (3), 275290.CrossRefGoogle Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 b Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Bagnold, R. 1941 The Physics of Blown Sand and Desert Dunes. Methuen.Google Scholar
Baker, L., Frankel, A., Mani, A. & Coletti, F. 2017 Coherent clusters of inertial particles in homogeneous turbulence. J. Fluid Mech. 833, 364398.CrossRefGoogle Scholar
Balachandar, S. 2009 A scaling analysis for point-particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35 (9), 801810.CrossRefGoogle Scholar
Barenblatt, G. I., Chorin, A. J. & Prostokishin, V. M. 2000 A note on the intermediate region in turbulent boundary layers. Phys. Fluids 12 (9), 21592161.CrossRefGoogle Scholar
Bec, J., Biferale, L., Lanotte, A. S., Scagliarini, A. & Toschi, F. 2010 Turbulent pair dispersion of inertial particles. J. Fluid Mech. 645, 497528.CrossRefGoogle Scholar
Benson, M., Tanaka, T. & Eaton, J. K. 2004 Effects of wall roughness on particle velocities in a turbulent channel flow. Trans. ASME: J. Fluids Engng 127, 250256.Google Scholar
Bernardini, M. 2014 Reynolds number scaling of inertial particle statistics in turbulent channel flows. J. Fluid Mech. 758, R1.CrossRefGoogle Scholar
Boudreau, B. P. & Hill, P. S. 2020 Rouse revisited: the bottom boundary condition for suspended sediment profiles. Mar. Geol. 419, 106066.CrossRefGoogle Scholar
Cardesa, J., Mistry, D., Gan, L. & Dawson, J. 2013 Invariants of the reduced velocity gradient tensor in turbulent flows. J. Fluid Mech. 716, 597615.CrossRefGoogle Scholar
Carper, M. A. & Porté-Agel, F. 2007 Subfilter-scale fluxes over a surface roughness transition. Part I: measured fluxes and energy transfer rates. Boundary-Layer Meteorol. 126 (1), 157179.CrossRefGoogle Scholar
Carter, D. W. & Coletti, F. 2018 Small-scale structure and energy transfer in homogeneous turbulence. J. Fluid Mech. 854, 505543.CrossRefGoogle Scholar
Chamecki, M. & Meneveau, C. 2011 Particle boundary layer above and downstream of an area source: scaling, simulations, and pollen transport. J. Fluid Mech. 683, 126.CrossRefGoogle Scholar
Chamecki, M., van Hout, R., Meneveau, C. & Parlange, M. B. 2007 Concentration profiles of particles settling in the neutral and stratified atmospheric boundary layer. Boundary-Layer Meteorol. 125 (1), 2538.CrossRefGoogle Scholar
Chou, Y.-J. & Fringer, O. B. 2008 Modeling dilute sediment suspension using large-eddy simulation with a dynamic mixed model. Phys. Fluids 20 (11), 115103.CrossRefGoogle Scholar
Clift, R., Grace, J. & Weber, M. E. 2005 Bubbles, Drops and Particles. Dover.Google Scholar
Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1 (2), 191226.CrossRefGoogle Scholar
Eaton, J. & Fessler, J. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Ferry, J. & Balachandar, S. 2001 A fast Eulerian method for disperse two-phase flow. Intl J. Multiphase Flow 27 (7), 11991226.CrossRefGoogle Scholar
Finn, J. R. & Li, M. 2016 Regimes of sediment-turbulence interaction and guidelines for simulating the multiphase bottom boundary layer. Intl J. Multiphase Flow 85, 278283.CrossRefGoogle Scholar
Fiscaletti, D., Ganapathisubramani, B. & Elsinga, G. E. 2015 Amplitude and frequency modulation of the small scales in a jet. J. Fluid Mech. 772, 756783.CrossRefGoogle Scholar
Fong, K. O., Amili, O. & Coletti, F. 2019 Velocity and spatial distribution of inertial particles in a turbulent channel flow. J. Fluid Mech. 872, 367406.CrossRefGoogle Scholar
Gillette, D. A., Blifford, I. H. & Fryrear, D. W. 1974 The influence of wind velocity on the size distributions of aerosols generated by the wind erosion of soils. J. Geophys. Res. 79 (27), 40684075.CrossRefGoogle Scholar
Gillies, J. & Berkofsky, L. 2004 Eolian suspension above the saltation layer, the concentration profile. J. Sedim. Res. 74 (2), 176183.CrossRefGoogle Scholar
Good, G. H., Gerashchenko, S. & Warhaft, Z. 2012 Intermittency and inertial particle entrainment at a turbulent interface: the effect of the large-scale eddies. J. Fluid Mech. 694, 371398.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J. C. 2006 Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence. Phys. Fluids 18 (11), 115103.CrossRefGoogle Scholar
Guala, M., Metzeger, M. & McKeon, B. J. 2011 Interactions within the turbulent boundary layer at high Reynolds number. J. Fluid Mech. 666, 573604.CrossRefGoogle Scholar
van Hout, R. 2011 Time-resolved PIV measurements of the interaction of polystyrene beads with near-wall-coherent structures in a turbulent channel flow. Intl J. Multiphase Flow 37 (4), 346357.CrossRefGoogle Scholar
Hunt, J., Wray, A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent gas flows. NASA Tech. Rep. 89-24555.Google Scholar
Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.CrossRefGoogle Scholar
Hutchins, N., Chauhan, K., Marusic, I., Monty, J. & Klewicki, J. 2012 Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol. 145 (2), 273306.CrossRefGoogle Scholar
Ireland, P. J., Bragg, A. D. & Collins, L. R. 2016 a The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects. J. Fluid Mech. 796, 617658.CrossRefGoogle Scholar
Ireland, P. J., Bragg, A. D. & Collins, L. R. 2016 b The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 2. Simulations with gravitational effects. J. Fluid Mech. 796, 659711.CrossRefGoogle Scholar
Jung, J., Yeo, K. & Lee, C. 2008 Behavior of heavy particles in isotropic turbulence. Phys. Rev. E 77, 016307.CrossRefGoogle ScholarPubMed
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995 a Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Phys. Fluids 7 (5), 10951106.CrossRefGoogle Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995 b Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles. Phys. Fluids 7 (5), 11071121.CrossRefGoogle Scholar
Kasbaoui, M. H., Koch, D. L. & Desjardins, O. 2018 Clustering in Euler–Euler and Euler–Lagrange simulations of unbounded homogeneous particle-laden shear. J. Fluid Mech. 859, 174203.CrossRefGoogle Scholar
Kawanisi, K. & Shiozaki, R. 2008 Turbulent effects on the settling velocity of suspended sediment. J. Hydraul. Engng ASCE 134 (2), 261266.CrossRefGoogle Scholar
Kiger, K. T. & Pan, C. 2002 Suspension and turbulence modification effects of solid particulates on a horizontal turbulent channel flow. J. Turbul. 3, N19.CrossRefGoogle Scholar
Kind, R. 1992 One-dimensional aeolian suspension above beds of loose particles–a new concentration-profile equation. Atmos. Environ. 26 (5), 927931.CrossRefGoogle Scholar
Kok, J. F., Parteli, E. J. R., Michaels, T. I. & Karam, D. B. 2012 The physics of wind-blown sand and dust. Rep. Prog. Phys. 75 (10), 106901.CrossRefGoogle Scholar
Kulick, J. D., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109134.CrossRefGoogle Scholar
Kussin, J. & Sommerfeld, M. 2002 Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Exp. Fluids 33 (1), 143159.CrossRefGoogle Scholar
Lee, G. 2008 Sediment eddy diffusivity and selective suspension under waves and currents on the inner shelf. Geosci. J. 12 (4), 349359.CrossRefGoogle Scholar
Lee, J. & Lee, C. 2015 Modification of particle-laden near-wall turbulence: effect of Stokes number. Phys. Fluids 27 (2), 023303.CrossRefGoogle Scholar
Lehning, M., Löwe, H., Ryser, M. & Raderschall, N. 2008 Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resour. Res. 44, W07404.CrossRefGoogle Scholar
Li, J., Wang, H., Liu, Z., Chen, S. & Zheng, C. 2012 An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Exp. Fluids 53 (5), 13851403.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.CrossRefGoogle Scholar
Maxey, M. & Riley, J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883.CrossRefGoogle Scholar
Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.CrossRefGoogle Scholar
Nielsen, P. 1993 Turbulence effects on the settling of suspended particles. J. Sedim. Petrol. 63, 835838.Google Scholar
Niño, Y. & Garcia, M. H. 1996 Experiments on particle–turbulence interactions in the near-wall region of an open channel flow: implications for sediment transport. J. Fluid Mech. 326, 285319.CrossRefGoogle Scholar
Perry, A. E. & Chong, M. S. 1994 Topology of flow patterns in vortex motions and turbulence. Appl. Sci. Res. 53 (3–4), 357374.CrossRefGoogle Scholar
Petersen, A. J., Baker, L. & Coletti, F. 2019 Experimental study of inertial particles clustering and settling in homogeneous turbulence. J. Fluid Mech. 864, 925970.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Prandtl, L. 1952 Essentials of Fluid Dynamics with Applications to Hydraulics, Aeronautics, Meteorology and other Subjets. Hafner Publishing Company.Google Scholar
Rabey, P., Wynn, A. & Buxton, O. 2015 The kinematics of the reduced velocity gradient tensor in a fully developed turbulent free shear flow. J. Fluid Mech. 767, 627658.CrossRefGoogle Scholar
Reeks, M. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aerosol. Sci. 14 (6), 729739.CrossRefGoogle Scholar
Richter, D. & Chamecki, M. 2018 Inertial effects on the vertical transport of suspended particles in a turbulent boundary layer. Boundary-Layer Meteorol. 167, 235256.CrossRefGoogle Scholar
Richter, D. H. & Sullivan, P. P. 2014 Modification of near-wall coherent structures by inertial particles. Phys. Fluids 26 (10), 103304.CrossRefGoogle Scholar
Righetti, M. & Romano, G. P. 2004 Particle–fluid interactions in a plane near-wall turbulent flow. J. Fluid Mech. 505, 93121.CrossRefGoogle Scholar
van Rijn, L. C. 1984 Sediment transport, part II: suspended load transport. J. Hydraul. Engng ASCE 110 (11), 16131641.CrossRefGoogle Scholar
van Rijn, L. C. 2007 Unified view of sediment transport by currents and waves. II: suspended transport. J. Hydraul. Engng ASCE 133 (6), 668689.CrossRefGoogle Scholar
Rodríguez-López, E., Bruce, P. J. K. & Buxton, O. R. H. 2016 On the formation mechanisms of artificially generated high Reynolds number turbulent boundary layers. Boundary-Layer Meteorol. 160 (2), 201224.CrossRefGoogle Scholar
Rouse, H. 1937 Modern conceptions of the mechanics of fluid turbulence. Trans. Am. Soc. Civ. Engng 102, 463554.Google Scholar
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.CrossRefGoogle Scholar
Sabban, L. & van Hout, R. 2011 Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J. Aerosol. Sci. 42 (12), 867882.CrossRefGoogle Scholar
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C. M. 2012 Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.CrossRefGoogle Scholar
Schmidt, R. A. 1982 Vertical profiles of wind speed, snow concentration, and humidity in blowing snow. Boundary-Layer Meteorol. 23 (2), 223246.CrossRefGoogle Scholar
Singh, A., Howard, K. B. & Guala, M. 2014 On the homogenization of turbulent flow structures in the wake of a model wind turbine. Phys. Fluids 26 (2), 025103.CrossRefGoogle Scholar
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43 (1), 353375.CrossRefGoogle Scholar
Squires, K. D. & Eaton, J. K. 1991 a Preferential concentration of particles by turbulence. Phys. Fluids A 3 (5), 11691178.CrossRefGoogle Scholar
Squires, K. D. & Eaton, J. K. 1991 b Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 226, 135.CrossRefGoogle Scholar
Tanière, A., Oesterlé, B. & Monnier, J. C. 1997 On the behaviour of solid particles in a horizontal boundary layer with turbulence and saltation effects. Exp. Fluids 23 (6), 463471.Google Scholar
Tsoar, H. & Pye, K. 1987 Dust transport and the question of desert loess formation. Sedimentology 34 (1), 139153.CrossRefGoogle Scholar
Wang, G. & Richter, D. H. 2019 Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow. J. Fluid Mech. 868, 538559.CrossRefGoogle Scholar
Wang, G., Fong, K. O., Coletti, F., Capecelatro, J. & Richter, D. H. 2019 Inertial particle velocity and distribution in vertical turbulent channel flow: a numerical and experimental comparison. Intl J. Multiphase Flow 120, 103105.CrossRefGoogle Scholar
Wang, H. & Liang, S. S. 1975 Mechanics of suspended sediment in random waves. J. Geophys. Res. 80 (24), 34883494.CrossRefGoogle Scholar
Wang, L.-P. & Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
Wang, L.-P. & Stock, D. E. 1993 Dispersion of heavy particles by turbulent motion. J. Atmos. Sci. 50 (13), 18971913.2.0.CO;2>CrossRefGoogle Scholar
Wang, Y., Lam, K. M. & Lu, Y. 2018 Settling velocity of fine heavy particles in turbulent open channel flow. Phys. Fluids 30 (9), 095106.CrossRefGoogle Scholar
Yoshimoto, H. & Goto, S. 2007 Self-similar clustering of inertial particles in homogeneous turbulence. J. Fluid Mech. 577, 275286.CrossRefGoogle Scholar
Zhang, Y., Hu, R. & Zheng, X. 2018 Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: a large-eddy simulation study. Phys. Fluids 30 (4), 046601.CrossRefGoogle Scholar
Zhao, L. H., Andersson, H. I. & Gillissen, J. J. J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22 (8), 081702.CrossRefGoogle Scholar
Zheng, J., Jie Li, R., Feng, Q. & Sha Lu, S. 2013 Vertical profiles of fluid velocity and suspended sediment concentration in nearshore. Intl J. Sedim. Res. 28 (3), 406412.CrossRefGoogle Scholar
Zhu, H.-Y., Pan, C., Wang, J.-J., Liang, Y.-R. & Ji, X.-C. 2019 Sand-turbulence interaction in a high-Reynolds-number turbulent boundary layer under net sedimentation conditions. Intl J. Multiphase Flow 119, 5671.CrossRefGoogle Scholar