Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T21:56:27.231Z Has data issue: false hasContentIssue false

Transport of a dilute active suspension in pressure-driven channel flow

Published online by Cambridge University Press:  20 July 2015

Barath Ezhilan
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
David Saintillan*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
*
Email address for correspondence: [email protected]

Abstract

Confined suspensions of active particles show peculiar dynamics characterized by wall accumulation, as well as upstream swimming, centreline depletion and shear trapping when a pressure-driven flow is imposed. We use theory and numerical simulations to investigate the effects of confinement and non-uniform shear on the dynamics of a dilute suspension of Brownian active swimmers by incorporating a detailed treatment of boundary conditions within a simple kinetic model where the configuration of the suspension is described using a conservation equation for the probability distribution function of particle positions and orientations, and where particle–particle and particle–wall hydrodynamic interactions are neglected. Based on this model, we first investigate the effects of confinement in the absence of flow, in which case the dynamics is governed by a swimming Péclet number, or ratio of the persistence length of particle trajectories over the channel width, and a second swimmer-specific parameter whose inverse measures the strength of propulsion. In the limit of weak and strong propulsion, asymptotic expressions for the full distribution function are derived. For finite propulsion, analytical expressions for the concentration and polarization profiles are also obtained using a truncated moment expansion of the distribution function. In agreement with experimental observations, the existence of a concentration/polarization boundary layer in wide channels is reported and characterized, suggesting that wall accumulation in active suspensions is primarily a kinematic effect that does not require hydrodynamic interactions. Next, we show that application of a pressure-driven Poiseuille flow leads to net upstream swimming of the particles relative to the flow, and an analytical expression for the mean upstream velocity is derived in the weak-flow limit. In stronger imposed flows, we also predict the formation of a depletion layer near the channel centreline, due to cross-streamline migration of the swimming particles towards high-shear regions where they become trapped, and an asymptotic analysis in the strong-flow limit is used to obtain a scale for the depletion layer thickness and to rationalize the non-monotonic dependence of the intensity of depletion upon flow rate. Our theoretical predictions are all shown to be in excellent agreement with finite-volume numerical simulations of the kinetic model, and are also supported by recent experiments on bacterial suspensions in microfluidic devices.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altshuler, E., Miño, G., Pérez-Penichet, C., del Río, L., Lindner, A., Rousselet, A. & Clément, E. 2013 Flow-controlled densification and anomalous dispersion of E. coli through a constriction. Soft Matt. 9, 18641870.Google Scholar
Baskaran, A. & Marchetti, M. C. 2009 Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Natl Acad. Sci. USA 106, 1556715572.CrossRefGoogle ScholarPubMed
Bearon, R. N., Hazel, A. L. & Thorn, G. J. 2011 The spatial distribution of gyrotactic swimming micro-organisms in laminar flow fields. J. Fluid Mech. 680, 602635.Google Scholar
Berke, A. P., Turner, L., Berg, H. C. & Lauga, E. 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102.Google Scholar
Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284304.Google Scholar
Cellia, J. P., Turner, B. S., Afdhal, N. H., Keates, S., Ghiran, I., Kelly, C. P., Ewoldt, R. H., McKinley, G. H., So, P., Erramilli, S. & Bansil, R. 2009 Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc. Natl Acad. Sci. USA 106, 1432114326.Google Scholar
Chilukuri, S., Collins, C. H. & Underhill, P. T. 2014 Impact of external flow on the dynamics of swimming microorganisms near surfaces. J. Phys.: Condens. Matt. 26, 115101.Google Scholar
Costanzo, A., Di Leonardo, R., Ruocco, G. & Angelani, L. 2012 Transport of self-propelling bacteria in micro-channel flow. J. Phys.: Condens. Matt. 24, 065101.Google Scholar
Denissenko, P., Kanstler, V., Smith, D. J. & Kirkman-Brown, J. 2012 Human spermatozoa migration in micro channels reveals boundary-following navigation. Proc. Natl Acad. Sci. USA 109, 80078010.Google Scholar
Di Leonardo, R., Angelani, L., Dell’Arciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M. P., Mecarini, F., De Angelis, F. & Di Fabrizio, E. 2010 Bacterial ratchet motors. Proc. Natl Acad. Sci. USA 107, 95419545.Google Scholar
Doi, M. & Edwards, S. F. 1986 The Theory of Polymer Dynamics. Oxford University Press.Google Scholar
Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E. 2011 Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. Proc. Natl Acad. Sci. USA 108, 1094010945.CrossRefGoogle ScholarPubMed
Edwards, S. A. & Yeomans, J. M. 2009 Spontaneous flow states in active nematics: a unified picture. Europhys. Lett. 85, 18008.Google Scholar
Elgeti, J. & Gompper, G. 2013 Wall accumulation of self-propelled spheres. Europhys. Lett. 101, 48003.Google Scholar
Elgeti, J. & Gompper, G. 2015 Run-and-tumble dynamics of self-propelled particles in confinement. Europhys. Lett. 109, 58003.Google Scholar
Ezhilan, B., Pahlavan, A. A. & Saintillan, D. 2012 Chaotic dynamics and oxygen transport in thin films of aerotactic bacteria. Phys. Fluids 24, 091701.Google Scholar
Fauci, L. J. & McDonald, A. 1995 Sperm motility in the presence of boundaries. Bull. Math. Biol. 57, 679699.Google Scholar
Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics. Springer.Google Scholar
Forest, M. G., Wang, Q. & Zhou, R. 2013 Kinetic theory and simulations of active polar liquid crystalline polymers. Soft Matt. 9, 52075222.Google Scholar
Fürthauer, S., Neef, M., Grill, S. W., Kruse, K. & Jülicher, F. 2012 The Taylor–Couette motor: spontaneous flows of active polar fluids between two coaxial cylinders. New J. Phys. 14, 023001.Google Scholar
Gachelin, J., Rousselet, A., Lindner, A. & Clement, E. 2014 Collective motion in an active suspension of E. coli bacteria. New J. Phys. 16, 025003.Google Scholar
Galajda, P., Keymer, J., Chaikin, P. & Austin, R. 2007 A wall of funnel concentrates swimming bacteria. J. Bacteriol. 189, 87048707.Google Scholar
Garcia, M., Berti, S., Peyla, P. & Rafaï, S. 2011 Random walk of a swimmer in a low-Reynolds-number medium. Phys. Rev. E 83, 035301.Google Scholar
Gibbs, J. G., Kothari, S., Saintillan, D. & Zhao, Y.-P. 2011 Geometrically designing the kinematic behavior of catalytic nanomotors. Nano Lett. 11, 25432550.Google Scholar
Hernández-Ortiz, J. P., Stoltz, C. G. & Graham, M. D. 2005 Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95, 204501.Google Scholar
Hernández-Ortiz, J. P., Underhill, P. T. & Graham, M. D. 2009 Dynamics of confined suspensions of swimming particles. J. Phys.: Condens. Matt. 21, 204107.Google Scholar
Hill, J., Kalkanci, O., McMurry, J. L. & Koser, H. 2007 Hydrodynamic surface interactions enable E. coli to seek efficient routes to swim upstream. Phys. Rev. Lett. 98, 068101.Google Scholar
Hulme, S. E., DiLuzio, W. R., Shevkoplyas, S. S., Turner, L., Mayer, M., Berg, H. C. & Whitesides, G. M. 2008 Using ratchets and sorters to fractionate motile cells of E. coli by length. Lab on a Chip 8, 18881895.Google Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Kaiser, A., Peshkov, A., Sokolov, A., ten Hagen, B., Löwen, H. & Aranson, I. S. 2014 Transport powered by bacterial turbulence. Phys. Rev. Lett. 112, 158101.Google Scholar
Kaiser, A., Wensink, H. H. & Löwen, H. 2012 How to capture active particles. Phys. Rev. Lett. 108, 268307.Google Scholar
Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R. E. 2014 Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife 3, 02403.Google Scholar
Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R. E. 2013 Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl Acad. Sci. USA 110, 11871192.Google Scholar
Kasyap, T. V. & Koch, D. 2014 Instability of an inhomogeneous bacterial suspension subjected to a chemo-attractant gradient. J. Fluid Mech. 741, 619657.Google Scholar
Kaya, T. & Koser, H. 2009 Characterization of hydrodynamic surface interactions of E. coli cell bodies in shear flow. Phys. Rev. Lett. 103, 138103.Google Scholar
Kaya, T. & Koser, H. 2012 Direct upstream motility in E. coli . Biophys. J. 102, 15141523.Google Scholar
Kim, M. Y., Drescher, K., Park, O. S., Bassler, B. & Stone, H. A. 2014 Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers. New J. Phys. 16, 065024.Google ScholarPubMed
Koumakis, N., Lepore, A., Maggi, C. & Di Leonardo, R. 2013 Targeted delivery of colloids by swimming bacteria. Nature Commun. 4, 2588.CrossRefGoogle ScholarPubMed
Krochak, P. J., Olson, J. A. & Martinez, D. M. 2010 Near-wall estimates of the concentration and orientation distribution of a semi-dilute rigid fibre suspension in Poiseuille flow. J. Fluid Mech. 653, 431462.Google Scholar
Lambert, G., Liao, D. & Austin, R. H. 2010 Collective escape of chemotactic swimmers through microscopic ratchets. Phys. Rev. Lett. 104, 168102.Google Scholar
Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. 2006 Swimming in circles: Motion of bacteria near solid boundaries. Biophys. J. 90, 400412.Google Scholar
Lecuyer, S., Rusconi, R., Chen, Y., Forsyth, A., Vlamakis, H., Kolter, R. & Stone, H. A. 2011 Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa . Biophys. J. 100, 341350.Google Scholar
Lee, C. F. 2013 Active particles under confinement: aggregation at the wall and gradient formation inside a channel. New J. Phys. 15, 055007.Google Scholar
Li, G. & Ardekani, A. M. 2014 Hydrodynamic interaction of microswimmers near a wall. Phys. Rev. E 90, 013010.Google ScholarPubMed
Li, G., Bensson, J., Nisimova, L., Munger, D., Mahautmr, P., Tang, J. X., Maxey, M. R. & Brun, Y. V. 2011 Accumulation of swimming bacteria near a solid surface. Phys. Rev. E 84, 041932.Google Scholar
Li, G. & Tang, J. X. 2009 Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 103, 078101.Google Scholar
Lu, L. & Walker, W. A. 2001 Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am. J. Clin. Nutr. 73, 11241130.Google Scholar
Lushi, E., Wioland, H. & Goldstein, R. E. 2014 Fluid flows created by swimming bacteria drive self-organization in confined suspensions. Proc. Natl Acad. Sci. USA 111, 97339738.Google Scholar
Marchetti, M. C., Joanny, J. F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M. & Aditi Simha, R. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 11431189.Google Scholar
Marenduzzo, D., Orlandini, E., Cates, M. & Yeomans, J. 2007a Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice Boltzmann simulations. Phys. Rev. E 76, 031921.Google Scholar
Marenduzzo, D., Orlandini, E. & Yeomans, J. 2007b Hydrodynamics and rheology of active liquid crystals: a numerical investigation. Phys. Rev. Lett. 98, 118102.CrossRefGoogle ScholarPubMed
Nash, R. W., Adhikari, R., Tailleur, J. & Cates, M. E. 2010 Run-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming. Phys. Rev. Lett. 104, 258101.Google Scholar
Nitsche, J. M. & Brenner, H. 1990 On the formulation of boundary conditions for rigid non spherical Brownian particles near solid walls: Applications to orientation-specific reactions with immobilized enzymes. J. Colloid Interface Sci. 138, 2141.Google Scholar
Ravnik, M. & Yeomans, J. M. 2013 Confined active nematic flow in cylindrical capillaries. Phys. Rev. Lett. 110, 026001.Google Scholar
Riedel, I. H., Kruse, K. & Howard, J. 2005 A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300303.Google Scholar
Rothschild, L. 1963 Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature 198, 12211222.CrossRefGoogle Scholar
Rusconi, R., Guasto, J. S. & Stocker, R. 2014 Bacterial transport suppressed by fluid shear. Nature Phys. 10, 212217.Google Scholar
Rusconi, R., Lecuyer, S., Guglielmini, L. & Stone, H. A. 2010 Laminar flow around corners triggers the formation of biofilm streamers. J. R. Soc. Interface 7, 12931299.Google Scholar
Saintillan, D. & Shelley, M. J. 2008a Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum particle simulations. Phys. Rev. Lett. 100, 178103.Google Scholar
Saintillan, D. & Shelley, M. J. 2008b Instabilities, pattern formation, and mixing in active suspensions. Phys. Fluids 20, 123304.Google Scholar
Saintillan, D. & Shelley, M. J. 2013 Active suspensions and their nonlinear models. C. R. Physique 14, 497517.Google Scholar
Schiek, R. L. & Shaqfeh, E. S. G. 1995 A nonlocal theory for stress in bound, Brownian suspensions of slender, rigid fibres. J. Fluid Mech. 296, 271324.Google Scholar
Sokolov, A., Apodaca, M. M., Grzybowski, B. A. & Aranson, I. S. 2010 Swimming bacteria power microscopic gears. Proc. Natl Acad. Sci. USA 107, 969974.Google Scholar
Spagnolie, S. E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near boundaries: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.Google Scholar
Suarez, S. S. & Pacey, A. A. 2006 Sperm navigation in the female reproductive tract. Human Reproduction Update 12, 2337.Google Scholar
Subramanian, G. & Koch, D. L. 2009 Critical bacterial concentration for the onset of collective swimming. J. Fluid Mech. 632, 359400.Google Scholar
Takagi, D., Braunschweig, A., Zhang, J. & Shelley, M. J. 2013 Dispersion of self-propelled rods undergoing fluctuation-driven flips. Phys. Rev. Lett. 110, 038301.Google Scholar
Takagi, D., Palacci, J., Braunschweig, A., Shelley, M. & Zhang, J. 2014 Hydrodynamic capture of microswimmers into sphere-bound orbits. Soft Matt. 10, 17841789.Google Scholar
Voituriez, R., Joanny, J. F. & Prost, J. 2005 Spontaneous flow transition in active polar gels. Europhys. Lett. 70, 404410.Google Scholar
Wioland, H., Woodhouse, F. G., Dunkel, J., Kessler, J. O. & Goldstein, R. E. 2013 Confinement stabilizes a bacterial suspension into a spiral vortex. Phys. Rev. Lett. 110, 268102.Google Scholar
Woolley, D. M. 2003 Motility of spermatozoa at surfaces. Reproduction 126, 259270.CrossRefGoogle ScholarPubMed
Zöttl, A. & Stark, H. 2012 Nonlinear dynamics of a microswimmer in Poiseuille flow. Phys. Rev. Lett. 108, 218104.Google Scholar
Zöttl, A. & Stark, H. 2013 Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow. Eur. Phys. J. E 36, 4.Google Scholar