Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-04-25T17:46:13.909Z Has data issue: false hasContentIssue false

Transport characteristics of finite-size microorganisms in turbulent channel flows

Published online by Cambridge University Press:  18 March 2025

Zhenyu Ouyang
Affiliation:
Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo 315201, PR China
Gaojin Li
Affiliation:
State Key Laboratory of Ocean Engineering, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Zhaowu Lin
Affiliation:
Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, PR China
Jianzhong Lin*
Affiliation:
Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo 315201, PR China Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, PR China
Zhaosheng Yu
Affiliation:
Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, PR China
*
Corresponding author: Jianzhong Lin, [email protected]

Abstract

The hydrodynamic behaviours of finite-size microorganisms in turbulent channel flows are investigated using a direct-forcing fictitious domain method. The classical ‘squirmer’ model, characterized by self-propulsion through tangential surface waves at its boundaries, is employed to mimic the swimming microorganisms. We adopt various simulation parameters, including a friction Reynolds number Reτ = 180, two squirmer volume fractions 𝜑0 = 12.7 % and 2.54 % and a blocking ratio (squirmer radius/half-channel width) κ = 0.125. Results show that pushers (propelled from the rear) induce a more pronounced decrease in the velocity profile than neutral squirmers and pullers (propelled from the front). This hindrance and the induced particle inner stress τpI positively correlate with the quantity of squirmers accumulated in the near-wall region. Notably, the increase in τpI primarily occurs at the expense of diminishing the fluid Reynolds stress τfR. Compared with passive spheres, a low volume fraction (𝜑0 = 2.54 %) of pullers results in a slightly enhanced velocity profile across the channel. In the near-wall region, the swimming direction of the squirmers shows no significant tendency with respect to the flow direction. In the bulk-flow region, pushers and neutral squirmers tend to align their axes more along the flow direction, whereas pullers exhibit a slight preference for alignment with the normal direction.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baggaley, A.W. 2016 Stability of model flocks in a vortical flow. Phys. Rev. E 93 (6), 063109.CrossRefGoogle Scholar
Beckett, B.S. 1986 Biology: A Modern Introduction. Oxford University Press.Google Scholar
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.CrossRefGoogle Scholar
Bluteau, C.E., Jones, N.L. & Ivey, G.N. 2016 Estimating turbulent dissipation from microstructure shear measurements using maximum likelihood spectral fitting over the inertial and viscous subranges. J. Atmos. Ocean. Technol. 33 (4), 713722.CrossRefGoogle Scholar
Borgnino, M., Boffetta, G., De Lillo, F. & Cencini, M. 2018 Gyrotactic swimmers in turbulence: shape effects and role of the large-scale flow. J. Fluid Mech. 856, R1.CrossRefGoogle Scholar
Cencini, M., Boffetta, G., Borgnino, M. & De Lillo, F. 2019 Gyrotactic phytoplankton in laminar and turbulent flows: a dynamical systems approach. Eur. Phys. J. E 42 (3), 115.CrossRefGoogle ScholarPubMed
Childress, S. & Childress, S. 1981 Mechanics of swimming and Flying. Cambridge University Press.CrossRefGoogle Scholar
Chisholm, N.G., Legendre, D., Lauga, E. & Khair, A.S. 2016 A squirmer across reynolds numbers. J. Fluid Mech. 796, 233256.CrossRefGoogle Scholar
Choudhary, A., Venkataraman, D. & Ray, S.S. 2015 Effect of inertia on model flocks in a turbulent environment. Europhys. Lett. 112 (2), 24005.CrossRefGoogle Scholar
Contino, M., Lushi, E., Tuval, I., Kantsler, V. & Polin, M. 2015 Microalgae scatter off solid surfaces by hydrodynamic and contact forces. Phys. Rev. Lett. 115 (25), 258102.CrossRefGoogle ScholarPubMed
Costa, P., Picano, F., Brandt, L. & Breugem, W.P. 2016 Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Phys. Rev. Lett. 117 (13), 134501.CrossRefGoogle ScholarPubMed
De Lillo, F., Cencini, M., Durham, W.M., Barry, M., Stocker, R., Climent, E. & Boffetta, G. 2014 Turbulent fluid acceleration generates clusters of gyrotactic microorganisms. Phys. Rev. Lett. 112 (4), 044502.CrossRefGoogle ScholarPubMed
Durham, W.M., Climent, E., Barry, M., De Lillo, F., Boffetta, G., Cencini, M. & Stocker, R. 2013 Turbulence drives microscale patches of motile phytoplankton. Nat. Commun. 4 (1), 2148.CrossRefGoogle ScholarPubMed
Fenchel, T. 1988 Marine plankton food chains. Annu. Rev. Ecol. Syst. 19 (1), 1938.CrossRefGoogle Scholar
Fuchs, H.L. & Gerbi, G.P. 2016 Seascape-level variation in turbulence- and wave-generated hydrodynamic signals experienced by plankton. Prog. Oceanogr. 141, 109129.CrossRefGoogle Scholar
Glowinski, R., Pan, T.W., Hesla, T.I. & Joseph, D.D. 1999 A distributed Lagrange multiplier/fictitious domain method for particulate flows. Intl J. Multiphase Flow 25 (5), 755794.CrossRefGoogle Scholar
Götze, I.O. & Gompper, G. 2010 Mesoscale simulations of hydrodynamic squirmer interactions. Phys. Rev. E 82 (4), 041921.CrossRefGoogle ScholarPubMed
Guasto, J.S., Rusconi, R. & Stocker, R. 2012 Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44 (1), 373400.CrossRefGoogle Scholar
Gupta, A., Roy, A., Saha, A. & Ray, S.S. 2020 Flocking of active particles in a turbulent flow. Phys. Rev. Fluids 5 (5), 052601.CrossRefGoogle Scholar
Gustavsson, K., Berglund, F., Jonsson, P.R. & Mehlig, B. 2016 Preferential sampling and small-scale clustering of gyrotactic microswimmers in turbulence. Phys. Rev. Lett. 116 (10), 108104.CrossRefGoogle ScholarPubMed
Hunt, J.C., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 summer program.Google Scholar
Hoyas, S. & Jiménez, J. 2008 Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20 (10), 101511.CrossRefGoogle Scholar
Ishikawa, T. & Hota, M. 2006 Interaction of two swimming paramecia. J. Exp. Biol. 209 (22), 44524463.CrossRefGoogle ScholarPubMed
Ishikawa, T. & Pedley, T.J. 2008 Coherent structures in monolayers of swimming particles. Phys. Rev. Lett. 100 (8), 088103.CrossRefGoogle ScholarPubMed
Ishikawa, T., Brumley, D.R. & Pedley, T.J. 2021 Rheology of a concentrated suspension of spherical squirmers: monolayer in simple shear flow. J. Fluid Mech. 914, A26.CrossRefGoogle Scholar
Ishikawa, T., Locsei, J.T. & Pedley, T.J. 2008 Development of coherent structures in concentrated suspensions of swimming model microorganisms. J. Fluid Mech. 615, 401431.CrossRefGoogle Scholar
Ishikawa, T., Simmonds, M.P. & Pedley, T.J. 2006 a Hydrodynamic interaction of two swimming model microorganisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Ishimoto, K. & Gaffney, E.A. 2013 Squirmer dynamics near a boundary. Phys. Rev. E 88 (6), 062702.CrossRefGoogle Scholar
Khair, A.S. & Chisholm, N.G. 2014 Expansions at small Reynolds numbers for the locomotion of a spherical squirmer. Phys. Fluids 26 (1), 011902.CrossRefGoogle Scholar
Khurana, N. & Ouellette, N.T. 2013 Stability of model flocks in turbulent-like flow. New J. Phys. 15 (9), 095015.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kiørboe, T., Jiang, H. & Colin, S.P. 2010 Danger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods. Proc. R. Soc. Lond. B: Biol. Sci. 277 (1698), 32293237.Google ScholarPubMed
Kiørboe, T. 2011 How zooplankton feed: mechanisms, traits and trade-offs. Biol. Rev. 86 (2), 311339.CrossRefGoogle ScholarPubMed
Koehl, M.A. & Cooper, T. 2015 Swimming in an unsteady world. Integr. Compar. Biol. 55 (4), 683697.CrossRefGoogle Scholar
Kuznetsov, A.V. 2011 Bio-thermal convection induced by two different species of microorganisms. Intl Commun. Heat Mass 38 (5), 548553.CrossRefGoogle Scholar
Li, G.J. & Ardekani, A.M. 2014 Hydrodynamic interaction of microswimmers near a wall. Phys. Rev. E 90 (1), 013010.CrossRefGoogle ScholarPubMed
Li, G.J., Ostace, A. & Ardekani, A.M. 2016 Hydrodynamic interaction of swimming organisms in an inertial regime. Phys. Rev. E 94 (5), 053104.CrossRefGoogle Scholar
Lighthill, M.J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5 (2), 109118.CrossRefGoogle Scholar
Lin, Z.W. & Gao, T. 2019 Direct-forcing fictitious domain method for simulating non-Brownian active particles. Phys. Rev. E 100 (1), 013304.CrossRefGoogle ScholarPubMed
Magar, V. & Pedley, T.J. 2005 Average nutrient uptake by a self-propelled unsteady squirmer. J. Fluid Mech. 539 (1), 93112.CrossRefGoogle Scholar
Magar, V., Goto, T. & Pedley, T.J. 2003 Nutrient uptake by a self-propelled steady squirmer. Q. J. Mech. Appl. Maths 56 (1), 6591.CrossRefGoogle Scholar
Marchioli, C., Bhatia, H., Sardina, G., Brandt, L. & Soldati, A. 2019 Role of large-scale advection and small-scale turbulence on vertical migration of gyrotactic swimmers. Phys. Rev. Fluids 4 (12), 124304.CrossRefGoogle Scholar
Masunaga, E., Fringer, O.B., Yamazaki, H. & Amakasu, K. 2016 Strong turbulent mixing induced by internal bores interacting with internal tide-driven vertically sheared flow. Geophys. Res. Lett. 43 (5), 20942101.CrossRefGoogle Scholar
More, R.V. & Ardekani, A.M. 2020 Motion of an inertial squirmer in a density stratified fluid. J. Fluid Mech. 905, A9.CrossRefGoogle Scholar
Muñoz, R. & Guieysse, B. 2006 Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 40 (15), 27992815.CrossRefGoogle ScholarPubMed
Navarro, R.M. & Pagonabarraga, I. 2010 Hydrodynamic interaction between two trapped swimming model micro-organisms. Eur. Phys. J. E 33 (1), 2739.CrossRefGoogle Scholar
Omori, T., Kikuchi, K., Schmitz, M., Pavlovic, M., Chuang, C.H. & Ishikawa, T. 2022 Rheotaxis and migration of an unsteady microswimmer. J. Fluid Mech. 930, A30.CrossRefGoogle Scholar
Ostapenko, T., Schwarzendahl, F.J., Böddeker, T.J., Kreis, C.T., Cammann, J., Mazza, M.G. & Bäumchen, O. 2018 Curvature-guided motility of microalgae in geometric confinement. Phys. Rev. Lett. 120 (6), 068002.CrossRefGoogle ScholarPubMed
Ouyang, Z.Y., Lin, J.Z. & Ku, X.K. 2018 The hydrodynamic behavior of a squirmer swimming in power-law fluid. Phys. Fluids 30 (8), 083301.CrossRefGoogle Scholar
Ouyang, Z.Y., Lin, J.Z. & Ku, X.K. 2019 Hydrodynamic interaction between a pair of swimmers in power-law fluid. Intl J. Nonlinear Mech. 108, 7280.CrossRefGoogle Scholar
Ouyang, Z.Y., Lin, Z.W., Lin, J.Z., Phan-Thien, N. & Zhu, J. 2023 Swimming of an inertial squirmer and squirmer dumbbell through a viscoelastic fluid. J. Fluid Mech. 969, A34.CrossRefGoogle Scholar
Ouyang, Z.Y., Lin, Z.W., Yu, Z.S., Lin, J.Z. & Phan-Thien, N. 2022 Hydrodynamics of an inertial squirmer and squirmer dumbbell in a tube. J. Fluid Mech. 939, A32.CrossRefGoogle Scholar
Pedley, T.J. & Kessler, J.O. 1990 A new continuum model for suspensions of gyrotactic micro-organisms. J. Fluid Mech. 212 (1), 155182.CrossRefGoogle ScholarPubMed
Pedley, T.J., Brumley, D.R. & Goldstein, R.E. 2016 Squirmers with swirl: a model for volvox swimming. J. Fluid Mech. 798, 165186.CrossRefGoogle Scholar
Pedley, T.J., Hill, N.A. & Kessler, J.O. 1988 The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms. J. Fluid Mech. 195 (1), 223237.CrossRefGoogle Scholar
Pedley, T.J. & Kessler, J.O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24 (1), 313358.CrossRefGoogle Scholar
Picano, F., Breugem, W.P. & Brandt, L. 2015 Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463487.CrossRefGoogle Scholar
Pujara, N., Koehl, M.A. & Variano, E.A. 2018 Rotations and accumulation of ellipsoidal microswimmers in isotropic turbulence. J. Fluid Mech. 838, 356368.CrossRefGoogle Scholar
Qi, K., Westphal, E., Gompper, G. & Winkler, R.G. 2022 Emergence of active turbulence in microswimmer suspensions due to active hydrodynamic stress and volume exclusion. Commun. Phys. 5 (1), 49.CrossRefGoogle Scholar
Qiu, J., Marchioli, C. & Zhao, L. 2022 A review on gyrotactic swimmers in turbulent flows. Acta Mech. Sinica 38 (8), 722323.CrossRefGoogle Scholar
Ruiz, J., Macías, D. & Peters, F. 2004 Turbulence increases the average settling velocity of phytoplankton cells. Proc. Natl Acad. Sci. USA 101 (51), 1772017724.CrossRefGoogle ScholarPubMed
Sengupta, A. 2023 Planktonic active matter. arxiv:2301.09550.Google Scholar
Sharma, C., Malhotra, D. & Rathore, A.S. 2011 Review of computational fluid dynamics applications in biotechnology processes. Biotechnol. Prog. 27 (6), 14971510.CrossRefGoogle ScholarPubMed
Shao, X.M., Wu, T.H. & Yu, Z.S. 2012 Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693, 319344.CrossRefGoogle Scholar
Spagnolie, S.E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.CrossRefGoogle Scholar
Svetlichny, L., Larsen, P.S. & Kiørboe, T. 2020 Kinematic and dynamic scaling of copepod swimming. Fluids 5 (2), 68.CrossRefGoogle Scholar
Tanaka, M., Genin, A., Endo, Y., Ivey, G.N. & Yamazaki, H. 2020 The potential role of turbulence in modulating the migration of demersal zooplankton. Limnol. Oceanogr. 66 (3), 855864.CrossRefGoogle Scholar
Thorpe, S.A. 2005 The Turbulent Ocean. Cambridge University Press.CrossRefGoogle Scholar
Torney, C. & Neufeld, Z. 2007 Transport and aggregation of self-propelled particles in fluid flows. Phys. Rev. Lett. 99 (7), 078101.CrossRefGoogle ScholarPubMed
Wang, S. & Ardekani, A. 2012 Inertial squirmer. Phys. Fluids 24 (10), 101902.CrossRefGoogle Scholar
Wheeler, J.D., Secchi, E., Rusconi, R. & Stocker, R. 2019 Not just going with the flow: the effects of fluid flow on bacteria and plankton. Annu. Rev. Cell Dev. Biol. 35 (1), 213237.CrossRefGoogle ScholarPubMed
Wickramarathna, L.N., Noss, C. & Lorke, A. 2014 Hydrodynamic trails produced by daphnia: size and energetics. PLoS ONE 9 (3), e92383.CrossRefGoogle ScholarPubMed
Yang, Q., Jiang, M., Picano, F. & Zhu, L. 2024 Shaping active matter from crystalline solids to active turbulence. Nat. Commun. 15 (1), 2874.CrossRefGoogle ScholarPubMed
Yu, Z.S. & Shao, X.M. 2007 A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 227 (1), 292314.CrossRefGoogle Scholar
Yu, Z.S. & Shao, X.M. 2010 Direct numerical simulation of particulate flows with a fictitious domain method. Intl J. Multiphase Flow 36 (2), 127134.CrossRefGoogle Scholar
Yu, Z.S., Lin, Z.W., Shao, X.M. & Wang, L.P. 2016 A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow. Engng Appl. Comput. Fluids mech. 10 (1), 160170.Google Scholar
Yu, Z.S., Lin, Z.W., Shao, X. & Wang, L.P. 2017 Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles. Phys. Rev. E 96 (3), 033102.CrossRefGoogle ScholarPubMed
Yu, Z.S., Xia, Y., Guo, Y. & Lin, J.Z. 2021 Modulation of turbulence intensity by heavy finite-size particles in upward channel flow. J. Fluid Mech. 913, A3.CrossRefGoogle Scholar
Zaferani, M., Cheong, S.H. & Abbaspourrad, A. 2018 Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. Proc. Natl Acad. Sci. USA 115 (33), 82728277.CrossRefGoogle ScholarPubMed
Zhan, C., Sardina, G., Lushi, E. & Brandt, L. 2014 Accumulation of motile elongated micro-organisms in turbulence. J. Fluid Mech. 739, 2236.CrossRefGoogle Scholar
Zhang, M.K., Yu, Z.S., Ouyang, Z.Y., Xia, Y. & Lin, Z.W. 2024 Numerical study of collective motion of microswimmers in Giesekus viscoelastic fluids. J. Non-Newtonian Fluid Mech. 329, 105245.CrossRefGoogle Scholar
Zhang, Z.Y., Qiu, J.R. & Zhao, L.H. 2022 Micro-swimmers in vertical turbulent channel flows. Intl J. Multiphase Flow 151, 104035.CrossRefGoogle Scholar
Zhao, L.H., Challabotla, N.R., Andersson, H.I. & Variano, E.A. 2015 Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115 (24), 244501.CrossRefGoogle ScholarPubMed
Zhao, L. & Andersson, H.I. 2016 Why spheroids orient preferentially in near-wall turbulence. J. Fluid Mech. 807, 221234.CrossRefGoogle Scholar
Zhu, C.L., Yu, Z.S. & Shao, X.M. 2018 Interface-resolved direct numerical simulations of the interactions between neutrally buoyant spheroidal particles and turbulent channel flows. Phys. Fluids 30 (11), 115103.CrossRefGoogle Scholar
Zohdi, E. & Abbaspour, M. 2019 Harmful algal blooms (red tide): a review of causes, impacts and approaches to monitoring and prediction. Intl J. Environ. Sci. Technol. 16 (3), 17891806.CrossRefGoogle Scholar
Zöttl, A. & Stark, H. 2014 Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Phys. Rev. Lett. 112 (11), 118101.CrossRefGoogle ScholarPubMed