Hostname: page-component-6bf8c574d5-qdpjg Total loading time: 0 Render date: 2025-02-18T21:19:38.007Z Has data issue: false hasContentIssue false

Transition to the buoyancy-dominated regime in a planar temporal forced plume

Published online by Cambridge University Press:  14 February 2025

L. Puggioni*
Affiliation:
Dipartimento di Fisica and INFN, Università di Torino, via Pietro Giuria 1, 10125 Torino, Italy Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
G. Boga
Affiliation:
Dipartimento di Ingegneria ‘Enzo Ferrari’, Università di Modena e Reggio Emilia, via Vivarelli 10, 41125 Modena, Italy
A. Cimarelli
Affiliation:
Dipartimento di Ingegneria ‘Enzo Ferrari’, Università di Modena e Reggio Emilia, via Vivarelli 10, 41125 Modena, Italy
M. Crialesi Esposito
Affiliation:
Dipartimento di Ingegneria ‘Enzo Ferrari’, Università di Modena e Reggio Emilia, via Vivarelli 10, 41125 Modena, Italy
S. Musacchio
Affiliation:
Dipartimento di Fisica and INFN, Università di Torino, via Pietro Giuria 1, 10125 Torino, Italy
E. Stalio
Affiliation:
Dipartimento di Ingegneria ‘Enzo Ferrari’, Università di Modena e Reggio Emilia, via Vivarelli 10, 41125 Modena, Italy
G. Boffetta
Affiliation:
Dipartimento di Fisica and INFN, Università di Torino, via Pietro Giuria 1, 10125 Torino, Italy
*
Email address for correspondence: [email protected]

Abstract

We study the transition from the momentum- to buoyancy-dominated regime in temporal jets forced by gravity. From the conservation of the thermal content and of the volume flux, we develop a simple model which is able to describe accurately the transition between the two regimes in terms of a single parameter representing the entrainment coefficient. Our analytical results are validated against a set of numerical simulations of temporal planar forced plumes at different initial values of Reynolds and Froude numbers. We find that, although the the pure jet-scaling law is not clearly observed in simulations at finite Froude number, the model correctly describes the transition to the buoyancy-dominated regime which emerges at long times.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akula, B., Suchandra, P., Mikhaeil, M. & Ranjan, D. 2017 Dynamics of unstably stratified free shear flows: an experimental investigation of coupled Kelvin–Helmholtz and Rayleigh–Taylor instability. J. Fluid Mech. 816, 619660.CrossRefGoogle Scholar
Bisset, D.K., Hunt, J.C.R. & Rogers, M.M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.CrossRefGoogle Scholar
Borrell, G. & Jiménez, J. 2016 Properties of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 801, 554596.CrossRefGoogle Scholar
van den Bremer, T.S. & Hunt, G.R. 2014 a Two-dimensional planar plumes and fountains. J. Fluid Mech. 750, 210244.CrossRefGoogle Scholar
van den Bremer, T.S. & Hunt, G.R. 2014 b Two-dimensional planar plumes: non-Boussinesq effects. J. Fluid Mech. 750, 245258.CrossRefGoogle Scholar
Brizzolara, S., Mollicone, J.-P., van Reeuwijk, M. & Holzner, M. 2023 Entrainment at multi-scales in shear-dominated and Rayleigh–Taylor turbulence. Eur. J. Mech. (B/Fluids) 101, 294302.CrossRefGoogle Scholar
Brizzolara, S., Mollicone, J.-P., van Reeuwijk, M., Mazzino, A. & Holzner, M. 2021 Transition from shear-dominated to Rayleigh–Taylor turbulence. J. Fluid Mech. 924,A10.CrossRefGoogle Scholar
Cimarelli, A. & Boga, G. 2021 Numerical experiments on turbulent entrainment and mixing of scalars. J. Fluid Mech. 927, A34.CrossRefGoogle Scholar
Cimarelli, A., Mollicone, J.-P., Van Reeuwijk, M. & De Angelis, E. 2021 Spatially evolving cascades in temporal planar jets. J. Fluid Mech. 910, A19.CrossRefGoogle Scholar
Corrsin, S. & Kistler, A.L. 1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep. TN-1244. NACA.Google Scholar
Craske, J., Salizzoni, P. & van Reeuwijk, M. 2017 The turbulent Prandtl number in a pure plume is 3/5. J. Fluid Mech. 822, 774790.CrossRefGoogle Scholar
De Rooy, W.C., Bechtold, P., Fröhlich, K., Hohenegger, C., Jonker, H., Mironov, D., Pier Siebesma, A., Teixeira, J. & Yano, J.-I. 2013 Entrainment and detrainment in cumulus convection: an overview. Q. J. R. Meteorol. Soc. 139 (670), 119.CrossRefGoogle Scholar
Hunt, G.R. & van den Bremer, T.S. 2011 Classical plume theory: 1937–2010 and beyond. IMA J. Appl. Maths 76 (3), 424448.CrossRefGoogle Scholar
Krug, D., Chung, D., Philip, J. & Marusic, I. 2017 Global and local aspects of entrainment in temporal plumes. J. Fluid Mech. 812, 222250.CrossRefGoogle Scholar
Mathew, J. & Basu, A.J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14 (7), 20652072.CrossRefGoogle Scholar
Mazzino, A. & Rosti, M.E. 2021 Unraveling the secrets of turbulence in a fluid puff. Phys. Rev. Lett. 127 (9), 094501.CrossRefGoogle Scholar
Morton, B.R. 1959 Forced plumes. J. Fluid Mech. 5 (1), 151163.CrossRefGoogle Scholar
Morton, B.R. & Middleton, J. 1973 Scale diagrams for forced plumes. J. Fluid Mech. 58 (1), 165176.CrossRefGoogle Scholar
Paillat, S. & Kaminski, E. 2014 Entrainment in plane turbulent pure plumes. J. Fluid Mech. 755, R2.CrossRefGoogle Scholar
van Reeuwijk, M. & Craske, J. 2015 Energy-consistent entrainment relations for jets and plumes. J. Fluid Mech. 782, 333355.CrossRefGoogle Scholar
van Reeuwijk, M. & Holzner, M. 2014 The turbulence boundary of a temporal jet. J. Fluid Mech. 739, 254275.CrossRefGoogle Scholar
da Silva, C.B., Hunt, J.C.R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46 (1), 567590.CrossRefGoogle Scholar
da Silva, C.B & Pereira, J.C.F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 055101.CrossRefGoogle Scholar
da Silva, C.B. & Taveira, R.R. 2010 The thickness of the turbulent/nonturbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer. Phys. Fluids 22, 121702.CrossRefGoogle Scholar
Snider, D.M. & Andrews, M.J. 1994 Rayleigh–Taylor and shear driven mixing with an unstable thermal stratification. Phys. Fluids 6 (10), 33243334.CrossRefGoogle Scholar
Speer, K.G. & Rona, P.A. 1989 A model of an Atlantic and Pacific hydrothermal plume. J. Geophys. Res.: Oceans 94 (C5), 62136220.CrossRefGoogle Scholar
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T. 2015 Turbulent mixing of passive scalar near turbulent and non-turbulent interface in mixing layers. Phys. Fluids 27 (8), 085109.CrossRefGoogle Scholar
Watanabe, T., Zhang, X. & Nagata, K. 2018 Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers. Phys. Fluids 30, 035102.CrossRefGoogle Scholar
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2005 Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95, 174501.CrossRefGoogle ScholarPubMed
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.CrossRefGoogle Scholar
Woods, A.W. 2010 Turbulent plumes in nature. Annu. Rev. Fluid Mech. 42, 391412.CrossRefGoogle Scholar
Zeldovich, Ya.B. 1937 The asymptotic laws of freely-ascending convective flows. Zh. Eksp. Teor. Fiz. 7 (12), 14631465.Google Scholar