Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T21:42:26.987Z Has data issue: false hasContentIssue false

Transition to chaos in the wake of a rolling sphere

Published online by Cambridge University Press:  22 February 2012

A. Rao*
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia
P.-Y. Passaggia
Affiliation:
Institut de Recherche sur les Phénomènes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Université, 13384 Marseille CEDEX 13, France
H. Bolnot
Affiliation:
Institut de Recherche sur les Phénomènes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Université, 13384 Marseille CEDEX 13, France
M.C. Thompson
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia
T. Leweke
Affiliation:
Institut de Recherche sur les Phénomènes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Université, 13384 Marseille CEDEX 13, France
K. Hourigan
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia Division of Biological Engineering, Monash University, Melbourne, VIC 3800, Australia
*
Email address for correspondence: [email protected]

Abstract

The wake of a sphere rolling along a wall at low Reynolds number is investigated numerically and experimentally. Two successive transitions are identified in this flow, as the Reynolds number is increased. The first leads to the periodic shedding of planar symmetric hairpin vortices. The second and previously unknown transition involves a loss of planar symmetry and a low-frequency lateral oscillation of the wake, exhibiting a surprising 7:3 resonance with the hairpin vortex shedding. The two transitions are characterized by dye visualizations and quantitative information obtained from numerical simulations, such as force coefficients and wake frequencies (Strouhal numbers). Both transitions are found to be supercritical. Further increasing the Reynolds number, the flow becomes progressively more disorganized and chaotic. Overall, the transition sequence for the rolling sphere is closer to the one for a non-rotating sphere in a free stream than to that of a non-rotating sphere close to a wall.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bolnot, H., Passaggia, P.-Y., Leweke, T. & Hourigan, K. 2011 Wake transition of a rolling sphere. J. Vis. 14, 12.CrossRefGoogle Scholar
2. Chhabra, R. P. & Ferreira, J. M. 1999 An analytical study of the motion of a sphere rolling down a smooth inclined plane in an incompressible Newtonian fluid. Powder Technol. 104 (2), 130138.CrossRefGoogle Scholar
3. Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745762.CrossRefGoogle Scholar
4. Dušek, J., Le Gal, P. & Fraunié, P. 1994 A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake. J. Fluid Mech. 264, 5980.CrossRefGoogle Scholar
5. Ghidersa, B. & Dušek, J. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere. J. Fluid Mech. 423, 3369.CrossRefGoogle Scholar
6. Jeong, J. & Hussain, F. 1999 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
7. Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.CrossRefGoogle Scholar
8. Karniadakis, G. E. & Sherwin, S. J. 2005 Spectral/hp Methods for Computational Fluid Dynamics. Oxford University Press.CrossRefGoogle Scholar
9. Le Gal, P., Nadim, A. & Thompson, M. 2001 Hysteresis in the forced Stuart–Landau equation: application to vortex shedding from an oscillating cylinder. J. Fluids Struct. 15, 445457.CrossRefGoogle Scholar
10. Leontini, J. S., Thompson, M. C. & Hourigan, K. 2007 Three-dimensional transition in the wake of a transversely oscillating cylinder. J. Fluid Mech. 577, 79104.CrossRefGoogle Scholar
11. Magarvey, R. H. & Bishop, R. L. 1961a Transition ranges for three-dimensional wakes. Can. J. Phys. 39, 14181422.CrossRefGoogle Scholar
12. Magarvey, R. H. & Bishop, R. L. 1961b Wakes in liquid-liquid systems. Phys. Fluids 4, 800805.CrossRefGoogle Scholar
13. Mittal, R. 1999 Planar symmetry in the unsteady wake of a sphere. AIAA J. 37, 388390.CrossRefGoogle Scholar
14. Mittal, R. & Najjar, F. M. 1993 Vortex dynamics in the sphere wake. AIAA Paper 99-3806.Google Scholar
15. Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard–von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.CrossRefGoogle Scholar
16. Ryan, K., Thompson, M. C. & Hourigan, K. 2005 Three-dimensional transition in the wake of bluff elongated cylinders. J. Fluid Mech. 538, 129.CrossRefGoogle Scholar
17. Sakamoto, H. & Haniu, H. 1990 A study of vortex shedding from spheres in a uniform flow. Trans. ASME: J. Fluids Engng 112, 386392.Google Scholar
18. Schouveiler, L., Brydon, A., Leweke, T. & Thompson, M. C. 2004 Interaction of the wakes of two spheres placed side by side. Eur. J. Mech. B 23, 137145.CrossRefGoogle Scholar
19. Sheard, G. J., Thompson, M. C. & Hourigan, K. 2003 From spheres to circular cylinders: the stability and flow structures of bluff ring wakes. J. Fluid Mech. 492, 147180.CrossRefGoogle Scholar
20. Stewart, B. E., Thompson, M. C., Leweke, T. & Hourigan, K. 2010a Numerical and experimental studies of the rolling sphere wake. J. Fluid Mech. 648, 225256.CrossRefGoogle Scholar
21. Stewart, B. E., Thompson, M. C., Leweke, T. & Hourigan, K. 2010b The wake behind a cylinder rolling on a wall at varying rotation rates. J. Fluid Mech. 643, 137162.CrossRefGoogle Scholar
22. Thompson, M. C., Hourigan, K., Cheung, A. & Leweke, T. 2006 Hydrodynamics of a particle impact on a wall. Appl. Math. Model. 30, 13561369.CrossRefGoogle Scholar
23. Thompson, M. C. & Le Gal, P. 2004 The Stuart–Landau model applied to wake transition revisited. Eur. J. Mech. B 23, 219228.CrossRefGoogle Scholar
24. Thompson, M. C., Leweke, T. & Hourigan, K. 2007 Sphere–wall collision: vortex dynamics and stability. J. Fluid Mech. 575, 121148.CrossRefGoogle Scholar
25. Thompson, M. C., Leweke, T. & Provansal, M. 2001a Kinematics and dynamics of a sphere wake transition. J. Fluids Struct. 15, 575585.CrossRefGoogle Scholar
26. Thompson, M. C., Leweke, T. & Williamson, C. H. K. 2001b The physical mechanism of transition in bluff body wakes. J. Fluids Struct. 15, 607616.CrossRefGoogle Scholar
27. Verekar, P. K. & Arakeri, J. H. 2010 Sphere rolling down an incline submerged in a liquid. In Proceedings of the 37th International and 4th International Conference on Fluid Mechanics and Fluid Power, 16–18 December, 2010, IIT Madras, Chennai, India, pp. 1–9.Google Scholar
28. Zeng, L., Balachander, S. & Fisher, P. 2005 Wall-induced forces on a rigid sphere at finite Reynolds number. J. Fluid Mech. 536, 125.CrossRefGoogle Scholar
29. Zeng, L., Najjar, F., Balachandar, S. & Fischer, P. 2009 Forces on a finite-sized particle located close to a wall in a linear shear flow. Phys. Fluids 21, 033302.CrossRefGoogle Scholar