Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T18:41:11.680Z Has data issue: false hasContentIssue false

Transient high-Rayleigh-number thermal convection with large viscosity variations

Published online by Cambridge University Press:  26 April 2006

Anne Davaille
Affiliation:
Laboratoire de Dynamique des Systèmes Géologiques, Université de Paris 7 et Institut de Physique du Globe, 4 place Jussieu, 75252 Paris Cedex 05, France
Claude Jaupart
Affiliation:
Laboratoire de Dynamique des Systèmes Géologiques, Université de Paris 7 et Institut de Physique du Globe, 4 place Jussieu, 75252 Paris Cedex 05, France

Abstract

The characteristics of thermal convection in a fluid whose viscosity varies strongly with temperature are studied in the laboratory. At the start of an experiment, the upper boundary of an isothermal layer of Golden Syrup is cooled rapidly and maintained at a fixed temperature. The fluid layer is insulated at the bottom and cools continuously. Rayleigh numbers calculated with the viscosity of the well-mixed interior are between 106 and 108 and viscosity contrasts are up to 106. Thermal convection develops only in the lower part of the thermal boundary layer, and the upper part remains stagnant. Vertical profiles of temperature are measured with precision, allowing deduction of the thickness of the stagnant lid and the convective heat flux. At the onset of convection, the viscosity contrast across the unstable boundary layer has a value of about 3. In fully developed convection, this viscosity contrast is higher, with a typical value of 10. The heat flux through the top of the layer depends solely on local conditions in the unstable boundary layer and may be written \[Q_{\rm s} = - CK_{\rm m} (\alpha g/\kappa \nu_{\rm m})^{\frac{1}{3}} \Delta T^{\frac{4}{3}}_{\rm v}\], where km and νm are thermal conductivity and kinematic viscosity at the temperature of the well-mixed interior, κ thermal diffusivity, α the coefficient of thermal expansion, g the acceleration due to gravity. ΔTv, is the ‘viscous’ temperature scale defined by \[\Delta T_{\rm v} = - \frac{\mu (T_{\rm m})}{({\rm d}\mu /{\rm d}T)(T_{\rm m})}\] where μ(T) is the fluid viscosity and Tm the temperature of the well-mixed interior. Constant C takes a value of 0.47 ± 0.03. Using these relations, the magnitude of temperature fluctuations and the thickness of the stagnant lid are calculated to be in excellent agreement with the experimental data. One condition for the existence of a stagnant lid is that the applied temperature difference exceeds a threshold value equal to (2ΔTv).

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asaeda, T. & Watanabe, K. 1989 The mechanism of heat transport in thermal convection at high Rayleigh number. Phys. Fluids A 1, 861867.Google Scholar
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. Wiley.
Blair, L. M. & Quinn, J. A. 1969 The onset of cellular convection in a fluid layer with time-dependent density gradients. J. Fluid Mech. 36, 385400.Google Scholar
Bloomfield, P. 1976 Fourier Analysis of Time Series: An Introduction. Wiley.
Booker, J. R. 1976 Thermal convection with strongly temperature dependent viscosity. J. Fluid Mech. 76, 741754.Google Scholar
Booker, J. R. & Stengel, K. C. 1978 Further thoughts on convective heat transport in a variable viscosity fluid. J. Fluid Mech. 86, 289291.Google Scholar
Busse, F. H. & Frick, H. 1985 Square pattern convection in fluids with strongly temperature-dependent viscosity. J. Fluid Mech. 150, 451465.Google Scholar
Busse, F. H. & Riahi, N. 1980 Nonlinear convection in a layer with nearly insulating boundaries. J. Fluid Mech. 96, 243256.Google Scholar
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids. Oxford University Press.
Castaing, B., Gunaratne, G., Heslot, F., Kadanof, L., Libchaber, A., Thomas, S. & Wu, X.-Z. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.Google Scholar
Christensen, U. & Harder, H. 1991 3-D convection with variable viscosity. Geophys. J. Intl 104, 213226.Google Scholar
Davaille, A. 1991 La convection thermique dans un fluide à viscosité variable. Applications à la terre. PhD thesis, Université Paris 6.
Deardorff, J. W. & Willis, G. E. 1965 Investigation of turbulent thermal convection between horizontal plates. J. Fluid Mech. 28, 675704.Google Scholar
Deardorff, J. W., Willis, G. E. & Lilly, D. K. 1969 Laboratory investigation of non-steady penetrative convection. J. Fluid Mech. 35, 731.Google Scholar
Fowler, A. C. 1985 A simple model of convection in the terrestrial planets. Geophys. Astrophys. Fluid Dyn. 31, 283309.Google Scholar
Goldstein, R. J., Chiang, H. D. & See, D. L. 1990 High-Rayleigh-number convection in a horizontal enclosure. J. Fluid Mech. 213, 111126.Google Scholar
Hansen, V., Yuen, D. A. & Kroening, S. E. 1990 Transition to hard turbulence in thermal convection at infinite Prandtl number. Phys. Fluids A 2, 21572163.Google Scholar
Heslot, F., Castaing, B. & Libchaber, A. 1987 Transitions to turbulence in helium gas. Phys. Rev. A 36, 58705873.Google Scholar
Howard, L. N. 1964 Convection at high Rayleigh number. In Proc. 11th Intl Congr. Applied Mechanics (ed. H. Görtler), pp. 11091115. Springer, Berlin.
Huppert, H. E. & Sparks, R. S. J. 1988 Melting the roof of a chamber containing a hot, turbulently convecting fluid. J. Fluid Mech. 188, 107131.Google Scholar
Huppert, H. E. & Turner, J. S. 1991 Comments on ‘On convective style and vigor in sheet-like magma chambers' by Bruce D. Marsh. J. Petrol. 32, 851854.Google Scholar
Hurle, D. T. J., Jakeman, E. & Pike, E. R. 1967 On the solution of the Bénard problem with boundaries of finite conductivity. Proc. R. Soc. Lond. A 296, 469475.Google Scholar
Jaupart, C. & Parsons, B. 1985 Convective instabilities in a variable viscosity fluid cooled from above. Phys. Earth Planet. Inter. 39, 1432.Google Scholar
Jhaveri, B. S. & Homsy, G. S. 1982 The onset of convection in fluid layers heated rapidly in a time-dependent manner. J. Fluid Mech. 114, 251260.Google Scholar
Katsaros, K. B., Liu, W. T., Businger, J. A. & Tillman, J. E. 1977 Heat transport and thermal structure in the interfacial boundary layer in an open tank of water in turbulent free convection. J. Fluid Mech. 83, 311335.Google Scholar
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.Google Scholar
Morris, S. & Canright, D. 1984 A boundary-layer analysis of Bénard convection in a fluid of strongly temperature-dependent viscosity. Phys. Earth Planet. Inter. 36, 355373.Google Scholar
Nataf, H.-C. & Richter, F. M. 1982 Convection experiments in fluids with highly temperature-dependent viscosity and the thermal evolution of the planets. Phys. Earth Planet. Inter. 29, 320329.Google Scholar
Ogawa, M., Schubert, G. & Zebib, A. 1991 Numerical simulations of three-dimensional thermal convection in a fluid with strongly temperature-dependent viscosity. J. Fluid Mech. 233, 299328.Google Scholar
Oliver, D. S. & Booker, J. R. 1983 Planform of convection with strongly temperature dependent viscosity. Geophys. Astrophys. Fluid Dyn. 27, 7385.Google Scholar
Richter, F. M., Nataf, H.-C. & Daly, S. F. 1983 Heat transfer and horizontally-averaged temperature of convection with large viscosity variations. J. Fluid Mech. 129, 173192.Google Scholar
Schubert, G., Turcotte, D. L. & Oxburgh, E. R. 1969 Stability of planetary interiors. Geophys. J. R. Astron. Soc. 18, 441460.Google Scholar
Smith, M. K. 1988 Thermal convection during the directional solidification of a pure liquid with variable viscosity. J. Fluid Mech. 188, 547570.Google Scholar
Sparrow, E. M., Husar, R. B. & Goldstein, R. J. 1970 Observations and other characteristics of thermals. J. Fluid Mech. 41, 793800.Google Scholar
Stengel, K. C., Oliver, D. S. & Booker, J. R. 1982 Onset of convection in a variable viscosity fluid. J. Fluid Mech. 120, 411431.Google Scholar
Thomas, D. B. & Townsend, A. A. 1957 Turbulent thermal convection over a heated horizontal surface. J. Fluid Mech. 2, 473485.Google Scholar
Townsend, A. A. 1959 Temperature fluctuations over a heated horizontal surface. J. Fluid Mech. 5, 209241.Google Scholar
Townsend, A. A. 1964 Natural convection in water over an ice surface. Q. J. R. Met. Soc. 90, 248259.Google Scholar
White, D. B. 1988 The planforms and onset of convection with a temperature dependent viscosity fluid. J. Fluid Mech. 191, 247286.Google Scholar
Wray, F. 1978 Some convective flows of geophysical interest. PhD thesis, University of Cambridge.