Published online by Cambridge University Press: 27 February 2012
The spectrum of the Batchelor vortex can be broadly split into a discrete spectrum, a potential spectrum and a free-stream spectrum where, since the last two spectra are both continuous, they can also be considered as one continuous spectrum. The discrete spectrum has been extensively studied but the continuous spectrum has received limited attention in the context of vortex flow. A local transient growth study is conducted and the contribution of the discrete spectrum and the continuous spectrum to the transient growth is separated by constructing optimal perturbations on the discrete or continuous sub-eigenspaces separately. It is found that the significant transient growth is mainly due to the non-normality of the continuous eigenmodes/spectrum whilst the discrete eigenmodes/spectrum have little contribution to the transient energy growth. A matrix-free method, which reduces to the local analysis when appropriate periodic boundary conditions are imposed, is also applied to investigate the transient growth in both a plane of constant azimuthal angle and a plane constant axial location. Previously studies by other authors have demonstrated that at zero azimuthal wavenumber the transient growth reaches infinitely large values over infinite time intervals while the optimal perturbations are located far from the vortex core. Therefore we limited our scope to small values of the time horizon so as to obtain reasonably strong transient effects stemming from physically relevant optimal perturbations. Two mechanisms of transient growth are observed: namely a redistribution of the azimuthal velocity to the azimuthal vorticity and interaction between out-of-vortex-core structures with those within the vortex core. A direct numerical simulation (DNS) of the vortex perturbed by optimal perturbations is conducted to investigate the nonlinear development of the optimal perturbations. In the azimuthally constant decomposed case, it is found that the optimal perturbation induces a string of bubble structures to be generated as a consequence of the non-orthogonality of continuous eigenmodes and the breakdown bubble is induced by viscous diffusion, while in the axially constant decomposition transient growth analysis, it is observed that the optimal perturbations associated with the continuous eigenmodes drive the vortex to vibrate around the initial vortex centre before eventually returning to its original position at larger times. This transient effect provides a mechanism for the ‘vortex meandering’ observed in previous experimental and numerical studies. These optimal perturbations associated with the continuous spectrum with out-of-vortex-core structures are observed to be activated by anisotropic inflow perturbations in the potential region.