Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T22:04:08.132Z Has data issue: false hasContentIssue false

Trajectory and distribution of suspended non-Brownian particles moving past a fixed spherical or cylindrical obstacle

Published online by Cambridge University Press:  02 January 2013

Sumedh R. Risbud
Affiliation:
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
German Drazer
Affiliation:
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA

Abstract

We investigate the motion of a suspended non-Brownian sphere past a fixed cylindrical or spherical obstacle in the limit of zero Reynolds number for arbitrary particle–obstacle aspect ratios. We consider both a suspended sphere moving in a quiescent fluid under the action of a uniform force as well as a uniform ambient velocity field driving a freely suspended particle. We determine the distribution of particles around a single obstacle and solve for the individual particle trajectories to comment on the transport of dilute suspensions past an array of fixed obstacles. First, we obtain an expression for the probability density function governing the distribution of a dilute suspension of particles around an isolated obstacle, and we show that it is isotropic. We then present an analytical expression – derived using both Eulerian and Lagrangian approaches – for the minimum particle–obstacle separation attained during the motion, as a function of the incoming impact parameter, i.e. the initial offset between the line of motion far from the obstacle and a parallel line that goes through its centre. Further, we derive the asymptotic behaviour for small initial offsets and show that the minimum separation decays exponentially. Finally we use this analytical expression to define an effective hydrodynamic surface roughness based on the net lateral displacement experienced by a suspended sphere moving past an obstacle.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczyk, Z. 1989a Particle deposition from flowing suspensions. Colloids Surf. 39 (1), 137.Google Scholar
Adamczyk, Z. 1989b Particle transfer and deposition from flowing colloid suspensions. Colloids Surf. 35 (2), 283308.Google Scholar
Adamczyk, Z. & van de Ven, T. G. M. 1981 Deposition of Brownian particles onto cylindrical collectors. J. Colloid Interface Sci. 84 (2), 497518.Google Scholar
Almog, Y. & Brenner, H. 1997 Non-continuum anomalies in the apparent viscosity experienced by a test sphere moving through an otherwise quiescent suspension. Phys. Fluids 9 (1), 1622.CrossRefGoogle Scholar
Balvin, M., Sohn, E., Iracki, T., Drazer, G. & Frechette, J. 2009 Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys. Rev. Lett. 103 (7), 078301.Google Scholar
Batchelor, G. K. 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part I. General theory. J. Fluid Mech. 119, 379408.Google Scholar
Batchelor, G. K. 1983 Corrigendum: Sedimentation in a dilute polydisperse system of interacting spheres. Parts I and II. J. Fluid Mech. 137, 467469.Google Scholar
Batchelor, G. K. & Green, J. T. 1972 The determination of the bulk stress in a suspension of spherical particles to order ${c}^{2} $ . J. Fluid Mech. 56, 401427.CrossRefGoogle Scholar
Batchelor, G. K. & Wen, C. S. 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part II. Numerical results. J. Fluid Mech. 124, 495528.CrossRefGoogle Scholar
Bergenholtz, J., Brady, J. F. & Vicic, M 2002 The non-Newtonian rheology of dilute colloidal suspensions. J. Fluid Mech. 456, 239275.Google Scholar
Blanc, F., Peters, F. & Lemaire, E. 2011 Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions. Phys. Rev. Lett. 107 (20), 208302.Google Scholar
Bowman, T., Frechette, J. & Drazer, G. 2012 Force driven separation of drops by deterministic lateral displacement. Lab on a Chip 12 (16), 29032908.CrossRefGoogle ScholarPubMed
Brady, J. F. & Morris, J. F. 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348 (1), 103139.Google Scholar
Brenner, H. & Edwards, D. A. 1993 Macrotransport Processes. Butterworth-Heinemann.Google Scholar
Burganos, V. N., Paraskeva, C. A. & Payatakes, A. C. 1992 Three-dimensional trajectory analysis and network simulation of deep bed filtration. J. Colloid Interface Sci. 148 (1), 167181.CrossRefGoogle Scholar
Burganos, V. N., Skouras, E. D., Paraskeva, C. A. & Payatakes, A. C. 2001 Simulation of the dynamics of depth filtration of non-Brownian particles. AIChE J. 47 (4), 880894.Google Scholar
Chang, Y.-I., Chen, S.-C. & Lee, E. 2003 Prediction of Brownian particle deposition in porous media using the constricted tube model. J. Colloid Interface Sci. 266 (1), 4859.Google Scholar
Claeys, I. L. & Brady, J. F. 1989 Lubrication singularities of the grand resistance tensor for two arbitrary particles. Physico-Chem. Hydrodyn. 11 (3), 261293.Google Scholar
Cox, R. G. 1974 The motion of suspended particles almost in contact. Intl J. Multiphase Flow 1 (2), 343371.Google Scholar
da Cunha, F. R. & Hinch, E. J. 1996 Shear-induced dispersion in a dilute suspension of rough spheres. J. Fluid Mech. 309, 211223.Google Scholar
Dabroś, T. & van de Ven, T. G. M. 1992 Surface collisions in a viscous fluid. J. Colloid Interface Sci. 149 (2), 493505.Google Scholar
Davis, R. H. 1992 Effects of surface-roughness on a sphere sedimenting through a dilute suspension of neutrally buoyant spheres. Phys. Fluids 4 (12), 26072619.CrossRefGoogle Scholar
Davis, R. H. & Hill, N. A. 1992 Hydrodynamic diffusion of a sphere sedimenting through a dilute suspension of neutrally buoyant spheres. J. Fluid Mech. 236, 513533.Google Scholar
Davis, R. H., Zhao, Y., Galvin, K. P. & Wilson, H. J. 2003 Solid–solid contacts due to surface roughness and their effects on suspension behaviour. Phil. Trans. R. Soc. A 361 (1806), 871894.CrossRefGoogle ScholarPubMed
Drazer, G., Koplik, J., Khusid, B. & Acrivos, A. 2002 Deterministic and stochastic behaviour of non-Brownian spheres in sheared suspensions. J. Fluid Mech. 460, 307335.Google Scholar
Drazer, G., Koplik, J., Khusid, B. & Acrivos, A. 2004 Microstructure and velocity fluctuations in sheared suspensions. J. Fluid Mech. 511, 237263.Google Scholar
Frechette, J. & Drazer, G. 2009 Directional locking and deterministic separation in periodic arrays. J. Fluid Mech. 627, 379401.Google Scholar
Goren, S. L. & O’Neill, M. E. 1971 On the hydrodynamic resistance to a particle of a dilute suspension when in the neighbourhood of a large obstacle. Chem. Eng. Sci. 26, 325338.Google Scholar
Gu, Y. & Li, D. 2002 Deposition of spherical particles onto cylindrical solid surfaces. I. Numerical simulations. J. Colloid Interface Sci. 248 (2), 315328.Google Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. Prentice-Hall.Google Scholar
Herrmann, J., Karweit, M. & Drazer, G. 2009 Separation of suspended particles in microfluidic systems by directional locking in periodic fields. Phys. Rev. E 79 (6), 061404.Google Scholar
Hewitt, G. F. & Marshall, J. S. 2010 Particle focusing in a suspension flow through a corrugated tube. J. Fluid Mech. 660, 258281.Google Scholar
Huang, L. R., Cox, E. C., Austin, R. H. & Sturm, J. C. 2004 Continuous particle separation through deterministic lateral displacement. Science 304 (5673), 987990.CrossRefGoogle ScholarPubMed
Ingber, M. S., Feng, S., Graham, A. L. & Brenner, H. 2008 The analysis of self-diffusion and migration of rough spheres in nonlinear shear flow using a traction-corrected boundary element method. J. Fluid Mech. 598, 267292.Google Scholar
Jeffrey, D. J. & Onishi, Y. 1984 Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261290.Google Scholar
Jegatheesan, V. & Vigneswaran, S. 2005 Deep bed filtration: mathematical models and observations. Crit. Rev. Environ. Sci. Technol. 35 (6), 515569.Google Scholar
Khair, A. & Brady, J. F. 2006 Single particle motion in colloidal dispersions: a simple model for active and nonlinear microrheology. J. Fluid Mech. 557, 73117.CrossRefGoogle Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Koch, D. L., Cox, R. G., Brenner, H. & Brady, J. F 1989 The effect of order on dispersion in porous media. J. Fluid Mech. 200, 173188.Google Scholar
Lee, J. & Koplik, J. 1999 Microscopic motion of particles flowing through a porous medium. Phys. Fluids 11 (1), 7687.CrossRefGoogle Scholar
Li, S.-Q. & Marshall, J. S. 2007 Discrete element simulation of micro-particle deposition on a cylindrical fibre in an array. J. Aerosol Sci. 38 (10), 10311046.Google Scholar
Li, Z. & Drazer, G. 2007 Separation of suspended particles by arrays of obstacles in microfluidic devices. Phys. Rev. Lett. 98 (5), 050602.Google Scholar
Luo, M., Sweeney, F., Risbud, S. R., Drazer, G. & Frechette, J. 2011 Irreversibility and pinching in deterministic particle separation. Appl. Phys. Lett. 99 (6), 064102.CrossRefGoogle Scholar
Nitsche, J. M. 1996 On Brownian dynamics with hydrodynamic wall effects: a problem in diffusion near a fibre, and the meaning of no-flux boundary condition. Chem. Eng. Commun. 148–150 (1), 623651.Google Scholar
Phillips, R. J., Deen, W. M. & Brady, J. F. 1989 Hindered transport of spherical macromolecules in fibrous membranes and gels. AIChE J. 35 (11), 17611769.Google Scholar
Phillips, R. J., Deen, W. M. & Brady, J. F. 1990 Hindered transport in fibrous membranes and gels: effect of solute size and fibre configuration. J. Colloid Interface Sci. 139 (2), 363373.Google Scholar
Rampall, I., Smart, J. R. & Leighton, D. T. 1997 The influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow. J. Fluid Mech. 339, 124.Google Scholar
Ryan, J. N. & Elimelech, M. 1996 Colloid mobilization and transport in groundwater. Colloid Surface A 107, 156.Google Scholar
Shapiro, M., Kettner, I. J. & Brenner, H. 1991 Transport mechanics and collection of submicrometre particles in fibrous filters. J. Aerosol Sci. 22 (6), 707722.Google Scholar
Smart, J. R. & Leighton, D. T. 1989 Measurement of the hydrodynamic surface roughness of noncolloidal spheres. Phys. Fluids A 1 (1), 5260.Google Scholar
Spielman, L. A. 1977 Particle capture from low-speed laminar flows. Annu. Rev. Fluid Mech. 9 (1), 297319.Google Scholar
van de Ven, T. G. M., Warszynski, P., Wu, X. & Dabroś, T. 1994 Colloidal particle scattering: a new method to measure surface forces. Langmuir 10 (9), 30463056.Google Scholar
van de Ven, T. G. M. & Wu, X. 1999 Characterizing the surface of latex particles with a microcollider. Colloid Surface A 153, 453458.Google Scholar
Whittle, M., Murray, B. S., Dickinson, E. & Pinfield, V. J. 2000 Determination of interparticle forces by colloidal particle scattering: a simulation study. J. Colloid Interface Sci. 223 (2), 273284.Google Scholar
Wilson, H. J. & Davis, R. H. 2000 The viscosity of a dilute suspension of rough spheres. J. Fluid Mech. 421, 339367.Google Scholar
Wu, X. & van de Ven, T. G. M. 1996 Characterization of hairy latex particles with colloidal particle scattering. Langmuir 12 (16), 38593865.Google Scholar
Xuan, X., Zhu, J. & Church, C. 2010 Particle focusing in microfluidic devices. Microfluid. Nanofluid. 9 (1), 116.Google Scholar
Yamada, M., Nakashima, M. & Seki, M. 2004 Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Aanl. Chem. 76 (18), 54655471.Google Scholar