Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T05:26:13.530Z Has data issue: false hasContentIssue false

Trajectories of particles at the surface of steep solitary waves

Published online by Cambridge University Press:  20 April 2006

M. S. Longuet-Higgins
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, and Institute of Oceanographic Sciences, Wormley, Surrey

Abstract

Theoretical calculations show that the horizontal displacement of particles in the surface of steep solitary waves exceeds that predicted by the Korteweg–de Vries equation by as much as 100%.

Experimental evidence is given in support of the higher values.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boussinesq, J. 1871 Théorie de l'intumescence liquide, appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris 72, 755759.Google Scholar
Daily, J. W. & Stephan, S. C. 1952 The solitary wave: its celerity, internal velocities and amplitude attenuation in a horizontal smooth channel. Proc. 3rd Conf. Coastal Engng, pp. 1330.
Fenton, J. D. 1972 A ninth-order solution for the solitary wave. J. Fluid Mech. 53, 257271.Google Scholar
Hammack, J. L. & Segur, H. 1974 The Korteweg — de Vries equation and water waves. Part 2. Comparison with experiments. J. Fluid Mech. 65, 289314.Google Scholar
Kaup, D. J. & Newell, A. C. 1978 Solitons as particles, oscillators, and in slowly changing media. Proc. Roy. Soc. A 361, 413446.Google Scholar
Korteweg, D. J. & De Vries, G. 1895 On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary wave. Phil. Mag. 39, 422443.Google Scholar
Laitone, E. V. 1960 The second approximation to cnoidal and solitary waves. J. Fluid Mech. 9, 430444.Google Scholar
Longuet-Higgins, M. S. 1979 The trajectories of particles in steep, symmetrical gravity waves. J. Fluid Mech. 94, 497517.Google Scholar
Longuet-Higgins, M. S. & Fenton, J. D. 1974 On the mass, momentum, energy and circulation of a solitary wave. II. Proc. Roy. Soc. A 340, 471493.Google Scholar
Longuet-Higgins, M. S. & Turner, J. S. 1974 An ‘entraining plume’ model of a spilling breaker. J. Fluid Mech. 63, 120.Google Scholar
Madsen, O. S. & Mei, C. C. 1969 The transformation of a solitary wave over an uneven bottom. J. Fluid Mech. 39, 781791.Google Scholar
Miles, J. W. 1980 Solitary waves. Ann. Rev. Fluid Mech. 12, 1143.Google Scholar
Price, R. K. 1971 Bottom drift for the solitary wave. J. Geophys. Res. 76, 16001602.Google Scholar
Rayleigh, Lord 1876 On waves. Phil. Mag. 1, 257279.Google Scholar
Russell, J. S. 1838 Report of The Committee on Waves. Proc. 7th Meeting, Brit. Ass. Adv. Sci., Liverpool, 1837, pp. 417496.
Russell, J. S. 1845 Report on waves. Proc. 14th Meeting, Brit. Ass. Adv. Sci., York, 1844, pp. 311390.