Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T22:48:17.578Z Has data issue: false hasContentIssue false

Topographically generated cyclonic disturbance and lee waves in a stratified rotating fluid

Published online by Cambridge University Press:  20 April 2006

H. K. Cheng
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles, California 90089-1454
H. Hefazi
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles, California 90089-1454
S. N. Brown
Affiliation:
Department of Mathematics, University College London. England

Abstract

The flow about an obstacle in horizontal motion relative to a stratified Boussinesq fluid in a deep, rapidly rotating container is studied. Numerical and asymptotic analyses of the linearized boundary-value problems for a shallow topography are made to delineate the influence of stratification and ground topography on wave and flow structure, and to ascertain the presence of a solitary anticyclonic, or cyclonic, disturbance in the far field at high as well as low stratification. Although the analyses are restricted to the rapidly rotating case corresponding to a vanishingly small Rossby number, it is pointed out that the cyclonic feature remains a valid inviscid description in the far field except for an infinite Rossby number corresponding to no rotation.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, p. 567. Cambridge University Press.
Bujmen, W. 1972 Rev. Geophys. Space Phys. 10, 485.
Buzzi, A. & Tibaldi, S. 1977 Q. J. R. Met. Soc. 103, 135.
Cheng, H. K. 1977 Z. angew. Math. Phys. 28, 753.
Cheng, H. K. & Johnson, E. R. 1982 Proc. R. Soc. Lond. A 383, 71.
Cheng, H. K., Hefazi, H. & Brown, S. N. 1982 Univ. S. Calif. School Engng, Aerospace Engng Dept Rep. USCAE 140.
Eckart, C. 1960 Hydrodynamics of Ocean and Atmosphere. Pergamon.
Greenspan, H. P. 1969 The Theory of Rotating Fluids, p. 51. Cambridge University Press.
Heikes, K. E. & Maxworthy, T. 1982 J. Fluid Mech. 125, 319.
Hide, R. 1971 J. Fluid Mech. 49, 745.
Hide, R., Ibbetson, A. & Lighthill, M. J. 1968 J. Fluid Mech. 32, 251.
Hogg, N. G. 1973 J. Fluid Mech. 58, 517.
Hogg, N. G. 1980 Effects of bottom topography on ocean currents. In Orographic Effects in Planetary Flows; GARP Publ. Series 23, 169.
Huppert, H. E. 1975 J. Fluid Mech. 67, 397.
Ingersoll, A. P. 1969 J. Atmos. Sci. 26, 744.
Johnson, E. R. 1978 J. Fluid Mech. 86, 209.
Johnson, E. R. 1982 J. Fluid Mech. 120, 359.
Lighthill, M. J. 1965 J. Inst. Math. Appl. 1, 1.
Lighthill, M. J. 1967 J. Fluid Mech. 27, 725.
Lighthill, M. J. 1978 Waves in Fluids. Cambridge University Press.
Maxworthy, T. 1977 Z. angew. Math. Phys. 28, 853.
Obukhov, A. M. 1949 Izv. Akad. Nauk SSSR Ser. Geograf.-Geofiz. 13, 281. (English transl. Dept Meteorol., Univ. Chicago).
Ogura, Y. & Phillips, W. A. 1962 J. Atmos. Sci. 19, 173.
Queney, P. 1948 Bull. Am. Meteor. Soc. 29, 16.
Redekopp, L. G. 1975 Geophys. Fluid Dyn. 6, 289.
Smith, R. 1979a J. Atmos. Sci. 36, 177.
Smith, R. 1979b J. Atmos. Sci. 36, 2395.
Smith, R. 1979c Adv. Geophys. 21, 87.
Stewartson, K. & Cheng, H. K. 1979 J. Fluid Mech. 91, 415.
Stix, T. H. 1962 The Theory of Plasma Waves, p. 13. McGraw-Hill.
Whitham, G. B. 1973 Linear and Nonlinear Waves. Wiley.
Yih, C. S. 1965 Dynamics of Nonhomogeneous Fluids. Macmillan.
Yih, C. S. 1978 Fluid Dynamics. West River.