Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T08:31:43.507Z Has data issue: false hasContentIssue false

Time-dependent measurements of length and area of the contact line in contact-boiling regime

Published online by Cambridge University Press:  10 September 2021

Mohammad Khavari
Affiliation:
Faculty of Technology, Design and Environment, Oxford Brookes University, OxfordOX33 1HX, UK Department of Materials, University of Oxford, Parks Road, OxfordOX1 3PH, UK
Tuan Tran*
Affiliation:
School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Republic of Singapore
*
Email address for correspondence: [email protected]

Abstract

During the impact of a liquid droplet on a sufficiently heated surface, bubble nucleation reduces the contact area between the liquid and the solid surface. Using high-speed imaging combined with total internal reflection, we measure and report how the contact area decreases with time for a wide range of surface temperatures and impact velocities. We also reveal how formation of the observed fingering patterns contributes to a substantial increase in the total length of the contact line surrounding the contact area.

Type
JFM Rapids
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashgriz, N. 2011 Handbook of Atomization and Sprays: Theory and Applications. Springer Science & Business Media.CrossRefGoogle Scholar
Bhardwaj, R., Longtin, J.P. & Attinger, D. 2010 Interfacial temperature measurements, high-speed visualization and finite-element simulations of droplet impact and evaporation on a solid surface. Intl J. Heat Mass Transfer 53 (19), 37333744.CrossRefGoogle Scholar
Breitenbach, J., Roisman, I.V. & Tropea, C. 2017 Heat transfer in the film boiling regime: single drop impact and spray cooling. Intl J. Heat Mass Transfer 110, 3442.CrossRefGoogle Scholar
Chandra, S. & Fauchais, P. 2009 Formation of solid splats during thermal spray deposition. J. Therm. Spray Technol. 18 (2), 148180.CrossRefGoogle Scholar
Davis, J.R., et al. 2004 Handbook of Thermal Spray Technology. ASM International.Google Scholar
Herbert, S., Fischer, S., Gambaryan-Roisman, T. & Stephan, P. 2013 Local heat transfer and phase change phenomena during single drop impingement on a hot surface. Intl J. Heat Mass Transfer 61, 605614.CrossRefGoogle Scholar
Hsieh, S.-S. & Luo, S.-Y. 2016 Droplet impact dynamics and transient heat transfer of a micro spray system for power electronics devices. Intl J. Heat Mass Transfer 92, 190205.CrossRefGoogle Scholar
Jung, J., Jeong, S. & Kim, H. 2016 Investigation of single-droplet/wall collision heat transfer characteristics using infrared thermometry. Intl J. Heat Mass Transfer 92, 774783.CrossRefGoogle Scholar
Khavari, M. 2017 Droplet impact on superheated surfaces. PhD thesis, Nanyang Technological University.Google Scholar
Khavari, M., Sun, C., Lohse, D. & Tran, T. 2015 Fingering patterns during droplet impact on heated surfaces. Soft Matt. 11 (17), 32983303.CrossRefGoogle ScholarPubMed
Khavari, M. & Tran, T. 2017 Universality of oscillating boiling in leidenfrost transition. Phys. Rev. E 96, 043102.CrossRefGoogle ScholarPubMed
Kim, J. 2007 Spray cooling heat transfer: the state of the art. Intl J. Heat Fluid Flow 28 (4), 753767.CrossRefGoogle Scholar
Kolinski, J.M., Mahadevan, L. & Rubinstein, S.M. 2014 a Drops can bounce from perfectly hydrophilic surfaces. Europhys. Lett. 108 (2), 24001.CrossRefGoogle Scholar
Kolinski, J.M., Mahadevan, L. & Rubinstein, S.M. 2014 b Lift-off instability during the impact of a drop on a solid surface. Phys. Rev. Lett. 112 (13), 134501.CrossRefGoogle ScholarPubMed
Kolinski, J.M., Rubinstein, S.M., Mandre, S., Brenner, M.P., Weitz, D.A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108 (7), 074503.CrossRefGoogle ScholarPubMed
Leidenfrost, J.G. 1756 De aquae communis nonnullis qualitatibus tractatus. Duisburg translation: on the fixation of water in diverse fire. Intl J. Heat Mass Transfer 9, 11531166 (1966).CrossRefGoogle Scholar
Liang, G., Mu, X., Guo, Y., Shen, S., Quan, S. & Zhang, J. 2016 Contact vaporization of an impacting drop on heated surfaces. Exp. Therm. Fluid Sci. 74, 7380.CrossRefGoogle Scholar
Liang, G. & Mudawar, I. 2017 Review of drop impact on heated walls. Intl J. Heat Mass Transfer 106, 103126.CrossRefGoogle Scholar
van Limbeek, M.A.J., Shirota, M., Sleutel, P., Sun, C., Prosperetti, A. & Lohse, D. 2016 Vapour cooling of poorly conducting hot substrates increases the dynamic leidenfrost temperature. Intl J. Heat Mass Transfer 97, 101109.CrossRefGoogle Scholar
Liu, D. & Tran, T. 2020 Size-dependent spontaneous oscillations of leidenfrost droplets. J. Fluid Mech. 902, A21.CrossRefGoogle Scholar
Moita, A.S. & Moreira, A.L.N. 2012 Scaling the effects of surface topography in the secondary atomization resulting from droplet/wall interactions. Exp. Fluids 52 (3), 679695.CrossRefGoogle Scholar
Nagai, N. & Nishio, S. 1996 Leidenfrost temperature on an extremely smooth surface. Exp. Therm. Fluid Sci. 12 (3), 373379.CrossRefGoogle Scholar
Pautsch, A.G. & Shedd, T.A. 2005 Spray impingement cooling with single-and multiple-nozzle arrays. Part I: heat transfer data using fc-72. Intl J. Heat Mass Transfer 48 (15), 31673175.CrossRefGoogle Scholar
Qiu, L., Dubey, S., Choo, F.H. & Duan, F. 2016 The transitions of time-independent spreading diameter and splashing angle when a droplet train impinging onto a hot surface. RSC Adv. 6 (17), 1364413652.CrossRefGoogle Scholar
Shirota, M., van Limbeek, M.A.J., Sun, C., Prosperetti, A. & Lohse, D. 2016 Dynamic leidenfrost effect: relevant time and length scales. Phys. Rev. Lett. 116 (6), 064501.CrossRefGoogle ScholarPubMed
Sinha-Ray, S. & Yarin, A.L. 2014 Drop impact cooling enhancement on nano-textured surfaces. Part I: theory and results of the ground (1g) experiments. Intl J. Heat Mass Transfer 70, 10951106.CrossRefGoogle Scholar
Staat, H.J.J., Tran, T., Geerdink, B., Riboux, G., Sun, C., Gordillo, J.M. & Lohse, D. 2015 Phase diagram for droplet impact on superheated surfaces. J. Fluid Mech. 779, R3.CrossRefGoogle Scholar
Tran, T., Staat, H.J.J., Prosperetti, A., Sun, C. & Lohse, D. 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108 (3), 036101.CrossRefGoogle ScholarPubMed
Van Limbeek, M.A.J., Schaarsberg, M.H.K., Sobac, B., Rednikov, A., Sun, C., Colinet, P. & Lohse, D. 2017 Leidenfrost drops cooling surfaces: theory and interferometric measurement. J. Fluid Mech. 827, 614639.CrossRefGoogle Scholar

Khavari and Tran supplementary movie 1

Synchronized side and bottom-view recordings of impact of ethanol droplet on the heated surface for We = 591 and T = 200 C

Download Khavari and Tran supplementary movie 1(Video)
Video 7.4 MB

Khavari and Tran supplementary movie 2

TIR recordings of the wet area for different surface temperatures and the same We number (We = 591)

Download Khavari and Tran supplementary movie 2(Video)
Video 10.2 MB

Khavari and Tran supplementary movie 3

TIR recordings of fingering patterns at different We numbers and the same surface temperature (T = 220 C)

Download Khavari and Tran supplementary movie 3(Video)
Video 9.6 MB