Article contents
Three-dimensional vortex formation from an oscillating, non-uniform cylinder
Published online by Cambridge University Press: 26 April 2006
Abstract
A cylinder having mild variations in diameter along its span is subjected to controlled excitation at frequencies above and below the inherent shedding frequency from the corresponding two-dimensional cylinder. The response of the near wake is characterized in terms of timeline visualization and velocity traces, spectra, and phase plane representations. It is possible to generate several types of vortex formation, depending upon the excitation frequency. Globally locked-in, three-dimensional vortex formation can occur along the entire span of the flow. Regions of locally locked-in and period-doubled vortex formation can exist along different portions of the span provided the excitation frequency is properly tuned. Unlike the classical subharmonic instability in free shear flows, the occurrence of period-doubled vortex formation does not involve vortex coalescence; instead, the flow structure alternates between two different states.
- Type
- Research Article
- Information
- Copyright
- © 1992 Cambridge University Press
References
- 9
- Cited by