Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T08:34:02.976Z Has data issue: false hasContentIssue false

Three-dimensional stability of vortex arrays in a stratified and rotating fluid

Published online by Cambridge University Press:  12 May 2011

AXEL DELONCLE*
Affiliation:
Hydrodynamics Laboratory (LadHyX), CNRS-Ecole Polytechnique, 91128 Palaiseau CEDEX, France
PAUL BILLANT
Affiliation:
Hydrodynamics Laboratory (LadHyX), CNRS-Ecole Polytechnique, 91128 Palaiseau CEDEX, France
JEAN-MARC CHOMAZ
Affiliation:
Hydrodynamics Laboratory (LadHyX), CNRS-Ecole Polytechnique, 91128 Palaiseau CEDEX, France
*
Email address for correspondence: [email protected]

Abstract

This paper investigates numerically and through an asymptotic approach the three-dimensional stability of steady vertical vortex arrays in a stratified and rotating fluid. Three classical vortex arrays are studied: the Kármán vortex street, the symmetric double row and the single row of co-rotating vortices. The asymptotic analysis assumes well-separated vortices and long-wavelength bending perturbations following Billant (J. Fluid Mech., vol. 660, 2010, p. 354) and Robinson & Saffman (J. Fluid Mech., vol. 125, 1982, p. 411). Very good agreement with the numerical stability analysis is found even for finite wavelength and relatively close vortices. For a horizontal Froude number Fh ≤ 1 and for a non-rotating fluid, it is found that the Kármán vortex street for a street spacing ratio (the distance h between the rows divided by the distance b between vortices in the same row) κ ≤ 0.41 and the symmetric double row for any spacing ratio are most unstable to a three-dimensional instability of zigzag type that vertically bends the vortices. The most amplified vertical wavenumber scales like 1/(bFh) and the growth rate scales with the strain Γ/(2πb2), where Γ is the vortex circulation. For the Kármán vortex street, the zigzag instability is symmetric with respect to the midplane between the two rows while it is antisymmetric for the symmetric double row. For the Kármán vortex street with well-separated vortex rows κ > 0.41 and the single row, the dominant instability is two-dimensional and corresponds to a pairing of adjacent vortices of the same row. The main differences between stratified and homogeneous fluids are the opposite symmetry of the dominant three-dimensional instabilities and the scaling of their most amplified wavenumber. When Fh > 1, three-dimensional instabilities are damped by a viscous critical layer. In the presence of background rotation in addition to the stratification, symmetric and antisymmetric modes no longer decouple and cyclonic vortices are less bent than anticyclonic vortices. However, the dominant instability remains qualitatively the same for the three vortex arrays, i.e. quasi-symmetric or quasi-antisymmetric and three-dimensional or two-dimensional. The growth rate continues to scale with the strain but the most unstable wavenumber of three-dimensional instabilities decreases with rotation and scales like Ro/(bFh) for small Rossby number Ro, in agreement with quasi-geostrophic scaling laws.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basak, S. & Sarkar, S. 2006 Dynamics of a stratified shear layer with horizontal shear. J. Fluid Mech. 568, 1954.CrossRefGoogle Scholar
Billant, P. 2010 Zigzag instability of vortex pairs in stratified and rotating fluids. Part 1. General stability equations. J. Fluid Mech. 660, 354395.CrossRefGoogle Scholar
Billant, P. & Chomaz, J.-M. 2000 Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid. J. Fluid Mech. 418, 167188.CrossRefGoogle Scholar
Billant, P., Deloncle, A., Chomaz, J.-M. & Otheguy, P. 2010 Zigzag instability of vortex pairs in stratified and rotating fluids. Part 2. Analytical and numerical analyses. J. Fluid Mech. 660, 396429.CrossRefGoogle Scholar
Billant, P. & Gallaire, F. 2005 Generalized Rayleigh criterion for non-axisymmetric centrifugal instabilities. J. Fluid Mech. 542, 365379.CrossRefGoogle Scholar
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8, 21722179.CrossRefGoogle Scholar
Deloncle, A., Chomaz, J.-M. & Billant, P. 2007 Three-dimensional stability of a horizontally sheared flow in a stably stratified fluid. J. Fluid Mech. 570, 297305.CrossRefGoogle Scholar
Etling, D. 1989 On atmospheric vortex streets in the wake of large islands. Meteorol. Atmos. Phys. 41, 157164.CrossRefGoogle Scholar
Etling, D. 1990 Mesoscale vortex shedding from large islands: a comparison with laboratory experiments of rotating stratified flows. Meteorol. Atmos. Phys. 43, 145151.CrossRefGoogle Scholar
Holford, M. & Linden, P. F. 1999 Turbulent mixing in a stratified fluid. Dyn. Atmos. Oceans 30, 173198.CrossRefGoogle Scholar
Jimenez, J. 1975 Stability of a pair of co-rotating vortices. Phys. Fluids 18, 15801581.CrossRefGoogle Scholar
von Kármán, T. 1911 Über den mechanismus des widerstands, den ein bewegter körper in einer flüssigkeit erfährt. Göttinger Nachr., Math. Phys. Kl. pp. 509–517.Google Scholar
von Kármán, T. 1912 Über den mechanismus des widerstands, den ein bewegter körper in einer flüssigkeit erfährt. Göttinger Nachr., Math. Phys. Kl. pp. 547–556.Google Scholar
von Kármán, T. & Rubach, H. L. 1912 Über den mechanismus des flüssigkeits- und luftwiderstands. Phys. Z 13, 4959.Google Scholar
Kloosterziel, R. C. & van Heijst, G. J. F. 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Leblanc, S. & Cambon, C. 1998 Effects of the Coriolis force on the stability of Stuart's vortices. J. Fluid Mech. 356, 353379.CrossRefGoogle Scholar
Li, X., Clemente-Colón, P., Pichel, W. G. & Vachon, P. W. 2000 Atmospheric vortex streets on a RADARSAT SAR image. Geophys. Res. Lett. 27 (11), 16551658.CrossRefGoogle Scholar
Otheguy, P., Billant, P. & Chomaz, J.-M. 2006 a The effect of planetary rotation on the zigzag instability of co-rotating vortices in a stratified fluid. J. Fluid Mech. 553, 273281.CrossRefGoogle Scholar
Otheguy, P., Chomaz, J.-M. & Billant, P. 2006 b Elliptic and zigzag instabilities on co-rotating vertical vortices in a stratified fluid. J. Fluid Mech. 553, 253272.CrossRefGoogle Scholar
Potylitsin, P. G. & Peltier, W. R. 1998 Stratification effects on the stability of columnar vortices on the f-plane. J. Fluid Mech. 355, 4579.CrossRefGoogle Scholar
Potylitsin, P. G. & Peltier, W. R. 1999 Three-dimensional destabilization of Stuart vortices: the influence of rotation and ellipticity. J. Fluid Mech. 387, 205226.CrossRefGoogle Scholar
Praud, O., Fincham, A. M. & Sommeria, J. 2005 Decaying grid turbulence in a strongly stratified fluid. J. Fluid Mech. 522, 133.CrossRefGoogle Scholar
Robinson, A. C. & Saffman, P. G. 1982 Three-dimensional stability of vortex arrays. J. Fluid Mech. 125, 411427.CrossRefGoogle Scholar
Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 120.CrossRefGoogle Scholar
Young, G. S. & Zawislak, J. 2006 An observational study of vortex spacing in island wake vortex streets. Mon. Weath. Rev. 134 (8), 22852294.CrossRefGoogle Scholar