Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T08:31:45.676Z Has data issue: false hasContentIssue false

Three-dimensional spatially localized binary-fluid convection in a porous medium

Published online by Cambridge University Press:  07 August 2013

David Lo Jacono*
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS, Université de Toulouse, Allée Camille Soula, F-31400 Toulouse, France
Alain Bergeon
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS, Université de Toulouse, Allée Camille Soula, F-31400 Toulouse, France
Edgar Knobloch
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720, USA
*
Email address for correspondence: [email protected]

Abstract

Three-dimensional convection in a binary mixture in a porous medium heated from below is studied. For negative separation ratios steady spatially localized convection patterns are expected. Such patterns, spatially localized in two dimensions, are computed and numerical continuation is used to examine their growth and proliferation as parameters are varied. The patterns studied have the form of a core region with four extended side-branches and can be stable. A physical mechanism behind the formation of these unusual structures is suggested.

Type
Rapids
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, A., Batiste, O., Knobloch, E. & Mercader, I. 2010 Convectons. In Localized States in Physics: Solitons and Patterns (ed. Descalzi, O.), pp. 109125. Springer.Google Scholar
Alonso, A., Batiste, O., Meseguer, A. & Mercader, I. 2007 Complex dynamical states in binary mixture convection with weak negative Soret coupling. Phys. Rev. E 75, 026310-1–15.CrossRefGoogle ScholarPubMed
Assemat, P., Bergeon, A. & Knobloch, E. 2007 Nonlinear Marangoni convection in circular and elliptical cylinders. Phys. Fluids 19, 104101-1–17.CrossRefGoogle Scholar
Avitabile, D., Lloyd, D. J. B., Burke, J., Knobloch, E. & Sandstede, B. 2010 To snake or not to snake in the planar Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst. 9, 704733.CrossRefGoogle Scholar
Batiste, O. & Knobloch, E. 2005 Simulations of localized states of stationary convection in 3He–4He mixtures. Phys. Rev. Lett. 95, 244501-1–4.CrossRefGoogle ScholarPubMed
Batiste, O., Knobloch, E., Alonso, A. & Mercader, I. 2006 Spatially localized binary-fluid convection. J. Fluid Mech. 560, 149158.CrossRefGoogle Scholar
Bergeon, A., Burke, J., Knobloch, E. & Mercader, I. 2008 Eckhaus instability and homoclinic snaking. Phys. Rev. E 78, 046201-1–16.CrossRefGoogle ScholarPubMed
Bergeon, A. & Knobloch, E. 2008 Spatially localized states in natural doubly diffusive convection. Phys. Fluids 20, 034102-1–8.CrossRefGoogle Scholar
Blanchflower, S. 1999 Magnetohydrodynamic convectons. Phys. Lett. A 261, 7481.CrossRefGoogle Scholar
Blanchflower, S. & Weiss, N. 2002 Three-dimensional magnetohydrodynamic convectons. Phys. Lett. A 294, 297303.CrossRefGoogle Scholar
Bortolozzo, U., Clerc, M. G. & Residori, S. 2009 Solitary localized structures in a liquid crystal light-valve experiment. New J. Phys. 11, 093037-1–10.CrossRefGoogle Scholar
Burke, J. & Knobloch, E. 2007 Homoclinic snaking: structure and stability. Chaos 17, 037102-1–15.CrossRefGoogle ScholarPubMed
Coullet, P., Riera, C. & Tresser, C. 2000 Stable static localized structures in one dimension. Phys. Rev. Lett. 84, 30693072.CrossRefGoogle ScholarPubMed
Dennin, M., Ahlers, G. & Cannell, D. S. 1996 Chaotic localized states near the onset of electroconvection. Phys. Rev. Lett. 77, 24752478.CrossRefGoogle ScholarPubMed
Duguet, Y., Schlatter, P. & Henningson, D. S. 2009 Localized edge states in plane Couette flow. Phys. Fluids 21, 111701-1–4.CrossRefGoogle Scholar
Ghorayeb, K. & Mojtabi, A. 1997 Double diffusive convection in a vertical rectangular cavity. Phys. Fluids 9, 23392348.CrossRefGoogle Scholar
Golubitsky, M., Swift, J. W. & Knobloch, E. 1984 Symmetries and pattern selection in Rayleigh–Bénard convection. Physica D 10, 249276.CrossRefGoogle Scholar
Joets, A. & Ribotta, R. 1988 Localized time-dependent state in the convection of a nematic liquid crystal. Phys. Rev. Lett. 60, 21642167.CrossRefGoogle Scholar
Lloyd, D. J. B. & Sandstede, B. 2009 Localized radial solutions of the Swift–Hohenberg equation. Nonlinearity 22, 485524.CrossRefGoogle Scholar
Lloyd, D. J. B., Sandstede, B., Avitabile, D. & Champneys, A. R. 2008 Localized hexagon patterns of the planar Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst. 7, 10491100.CrossRefGoogle Scholar
Lo Jacono, D., Bergeon, A. & Knobloch, E. 2010 Spatially localized binary fluid convection in a porous medium. Phys. Fluids 22, 073601-1–13.CrossRefGoogle Scholar
Lo Jacono, D., Bergeon, A. & Knobloch, E. 2011 Magnetohydrodynamic convectons. J. Fluid Mech. 687, 595605.CrossRefGoogle Scholar
McSloy, J. M., Firth, W. J., Harkness, G. K. & Oppo, G.-L. 2002 Computationally determined existence and stability of transverse structures. II. Multipeaked cavity solitons. Phys. Rev. E 66, 046606-1–8.CrossRefGoogle ScholarPubMed
Mercader, I., Batiste, O., Alonso, A. & Knobloch, E. 2009 Localized pinning states in closed containers: homoclinic snaking without bistability. Phys. Rev. E 80, 025201(R)-1–4.CrossRefGoogle ScholarPubMed
Mercader, I., Batiste, O., Alonso, A. & Knobloch, E. 2011 Convectons, anticonvectons and multiconvectons in binary fluid convection. J. Fluid Mech. 667, 586606.CrossRefGoogle Scholar
Pucci, G., Fort, E., Ben Amar, M. & Couder, Y. 2011 Mutual adaptation of a Faraday instability pattern with its flexible boundaries in floating fluid drops. Phys. Rev. Lett. 106, 024503-1–4.CrossRefGoogle ScholarPubMed
Richter, R. & Barashenkov, I. V. 2005 Two-dimensional solitons on the surface of magnetic fluids. Phys. Rev. Lett. 94, 184503-1–4.CrossRefGoogle ScholarPubMed
Riecke, H. 1992 Self-trapping of traveling-wave pulses in binary mixture convection. Phys. Rev. Lett. 68, 301304.CrossRefGoogle ScholarPubMed
Schneider, T. M., Gibson, J. F. & Burke, J. 2010a Snakes and ladders: localized solutions of plane Couette flow. Phys. Rev. Lett. 104, 104501-1–4.CrossRefGoogle ScholarPubMed
Schneider, T. M., Marinc, D. & Eckhardt, B. 2010b Localized edge states nucleate turbulence in extended plane Couette cells. J. Fluid Mech. 646, 441451.CrossRefGoogle Scholar
Silber, M. & Knobloch, E. 1988 Pattern selection in steady binary-fluid convection. Phys. Rev. A 38, 14681477.CrossRefGoogle ScholarPubMed
Tegze, G., Gránásy, L., Tóth, G. I., Douglas, J. F. & Pusztai, T. 2011 Tuning the structure of non-equilibrium soft materials by varying the thermodynamic driving force for crystal ordering. Soft Matt. 7, 17891799.CrossRefGoogle Scholar
Umla, R., Augustin, M., Huke, B. & Lücke, M. 2010 Roll convection of binary fluid mixtures in porous media. J. Fluid Mech. 649, 165186.CrossRefGoogle Scholar
Vladimirov, A. G., McSloy, J. M., Skryabin, D. V. & Firth, W. J. 2002 Two-dimensional clusters of solitary structures in driven optical cavities. Phys. Rev. E 65, 046606-1–11.CrossRefGoogle ScholarPubMed