Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T21:56:38.313Z Has data issue: false hasContentIssue false

Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure

Published online by Cambridge University Press:  02 December 2009

C. S. YOO
Affiliation:
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550-0969, USA
R. SANKARAN
Affiliation:
National centre for Computational Sciences, Oak Ridge National Laboratories, Oak Ridge, TN 37831-06008, USA
J. H. CHEN*
Affiliation:
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550-0969, USA
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulation (DNS) of the near field of a three-dimensional spatially developing turbulent lifted hydrogen jet flame in heated coflow is performed with a detailed mechanism to determine the stabilization mechanism and the flame structure. The DNS was performed at a jet Reynolds number of 11,000 with over 940 million grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. A chemical flux analysis shows the occurrence of near-isothermal chemical chain branching preceding thermal runaway upstream of the stabilization point, indicative of hydrogen auto-ignition in the second limit. The Damköhler number and key intermediate-species behaviour near the leading edge of the lifted flame also verify that auto-ignition occurs at the flame base. At the lifted-flame base, it is found that heat release occurs predominantly through ignition in which the gradients of reactants are opposed. Downstream of the flame base, both rich-premixed and non-premixed flames develop and coexist with auto-ignition. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base. In particular, the relative position of the flame base and the coherent flow structure induces a cyclic motion of the flame base in the transverse and axial directions about a mean lift-off height. This is confirmed by Lagrangian tracking of key scalars, heat release rate and velocity at the stabilization point.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea. Email: [email protected]

References

REFERENCES

Bilger, R. W. 1979 Turbulent flows with nonpremixed reactants. In Turbulent Reacting Flows (ed. Libby, P. A. & Williams, F. A.), Topics in Applied Physics, vol. 44, pp. 65113. Springer.Google Scholar
Bilger, R. W. 1988 The structure of turbulent nonpremixed flames. Proc. Combust. Inst. 22, 475488.CrossRefGoogle Scholar
Borghi, R. 1988 Turbulent combustion modelling. Prog. Energy Combust. Sci. 14, 245292.CrossRefGoogle Scholar
Buckmaster, J. 2002 Edge flames. Prog. Energy Combust. Sci. 28, 435475.CrossRefGoogle Scholar
Cabra, R., Myhrvold, T., Chen, J. Y., Dibble, R. W., Karpetis, A. N. & Barlow, R. S. 2002 Simultaneous laser Raman–Rayleigh–LIF measurements and numerical modelling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29, 18811888.CrossRefGoogle Scholar
Cao, R. R., Pope, S. B. & Masri, A. R. 2005 Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust. Flame 142, 438453.CrossRefGoogle Scholar
Chen, J. H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes, E. R., Klasky, S., Liao, W. K., Ma, K. L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S. & Yoo, C. S. 2009 Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2, 015001.CrossRefGoogle Scholar
Choi, C. W. & Puri, I. K. 2000 Flame stretch effects on partially premixed flames. Combust. Flame 123, 119139.CrossRefGoogle Scholar
Chung, S. H. 2007 Stabilization, propagation and instability of tribrachial triple flame. Proc. Combust. Inst. 31, 877892.CrossRefGoogle Scholar
Dec, J. E. 1997 Conceptual model of DI diesel combustion based on laser-sheet imaging. SAE Trans. 105, 13191348.Google Scholar
Domingo, P., Vervisch, L. & Réveillon, J. 2005 DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combust. Flame 152, 415432.CrossRefGoogle Scholar
Domingo, P., Vervisch, L. & Veynante, D. 2008 Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 140, 172195.CrossRefGoogle Scholar
Echekki, T. & Chen, J. H. 1999 Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame 118, 308311.CrossRefGoogle Scholar
Echekki, T. & Chen, J. H. 2003 Direct numerical simulation of autoignition in non-homogeneous hydrogen–air mixtures. Combust. Flame 134, 169191.CrossRefGoogle Scholar
Eswaran, V. & Pope, S. B. 1988 Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506520.CrossRefGoogle Scholar
Gamard, S., Jung, D. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 2. The far-field region. J. Fluid Mech. 514, 205230.CrossRefGoogle Scholar
Gibson, C. H. 1968 Fine structure of scalar fields mixed by turbulence. Part I. Zero-gradient points and minimal gradient surfaces. Phys. Fluids 11, 23052315.CrossRefGoogle Scholar
Gkagkas, K. & Lindstedt, R. P. 2006 PDF modelling of hydrogen/air lifted flame. In Eighth International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, Heigelberg, Germany.Google Scholar
Gordon, R. L., Masri, A. R. & Mastorakos, E. 2008 Simultaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow. Combust. Flame 155, 181195.CrossRefGoogle Scholar
Gordon, R. L., Masri, A. R., Pope, S. B. & Goldin, G. M. 2007 A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combust. Theory Model. 11, 351376.CrossRefGoogle Scholar
Hammer, J. A. & Roshko, A. 2000 Temporal behaviour of lifted turbulent jet flames. Combust. Sci. Technol. 155, 75103.CrossRefGoogle Scholar
Helenbrook, B. T., Im, H. G. & Law, C. K. 1998 Theory of radical-induced ignition of counterflowing hydrogen versus oxygen at high temperature. Combust. Flame 112, 242252.CrossRefGoogle Scholar
Im, H. G. & Chen, J. H. 1999 Structure and propagation of triple flames in partially premixed hydrogen–air mixtures. Combust. Flame 119, 436454.CrossRefGoogle Scholar
Im, H. G., Chen, J. H. & Law, C. K. 1998 Ignition of hydrogen-air mixing layer in turbulent flows. Proc. Combust. Inst. 27, 10471056.CrossRefGoogle Scholar
Jiménez, C. & Cuenot, B. 2007 DNS study of stabilization of turbulent triple flames by hot gases. Proc. Combust. Inst. 31, 16491656.CrossRefGoogle Scholar
Joedicke, A., Peters, N. & Mansour, M. 2005 The stabilization mechanism and structure of turbulent hydrocarbon lifted flames. Proc. Combust. Inst. 30, 901909.CrossRefGoogle Scholar
Jones, W. P. & Navarro-Martinez, S. 2007 Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame 150, 170187.CrossRefGoogle Scholar
Jung, D., Gamard, S. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region. J. Fluid Mech. 514, 173204.CrossRefGoogle Scholar
Kalghatgi, G. T. 1984 Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 41, 1729.Google Scholar
Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E. & Miller, J. A. 1986 A fortran computer code package for the evaluation of gas-phase multicomponent transport properties. Tech Rep. SAND86-8246. Sandia National Laboratories.Google Scholar
Kee, R. J., Grcar, J. F., Smooke, M. D. & Miller, J. A. 1985 A fortran program for modelling steady laminar one-dimensional flames. Tech Rep. SAND85-8240. Sandia National Laboratories.Google Scholar
Kee, R. J., Rupley, F. M., Meeks, E. & Miller, J. A. 1996 CHEMKIN-III: a fortran chemical kinetic package for the anaylsis of gas-phase chemical and plasma knietics. Tech Rep. SAND96-8216. Sandia National Laboratories.CrossRefGoogle Scholar
Kennedy, C. A. & Carpenter, M. H. 1994 Several new numerical methods for compressible shear-layer simulations. Appl. Num. Math. 14, 397433.CrossRefGoogle Scholar
Kennedy, C. A., Carpenter, M. H. & Lewis, R. M. 2000 Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Num. Math. 35, 117219.CrossRefGoogle Scholar
Kreutz, T. G. & Law, C. K. 1996 Ignition in nonpremixed counterflowing hydrogen versus heated air: computational study with detailed chemistry. Combust. Flame 104, 157175.CrossRefGoogle Scholar
Law, C. K. 2006 Combustion Physics. Cambridge University Press.CrossRefGoogle Scholar
Li, J., Zhao, Z., Kazakov, A. & Dryer, F. L. 2004 An updated comprehensive kinetic model of hydrogen combustion. Intl J. Chem. Kinet. 36, 566575.CrossRefGoogle Scholar
Lutz, A. E., Kee, R. J., Grcar, J. F. & Rupley, F. M. 1997 A fortran program for computing opposed-flow diffusion flames. Tech Rep. SAND96-8243. Sandia National Laboratories.CrossRefGoogle Scholar
Lyons, K. M. 2007 Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Prog. Energy Combust. Sci. 33, 211231.CrossRefGoogle Scholar
Markides, C. N. & Mastorakos, E. 2005 An experimental study of hydrogen autoignition in a turbulent co-flow of heated air. Proc. Combust. Inst. 30, 883891.CrossRefGoogle Scholar
Mascarenhas, A., Grout, R.W., Bremer, P.-T., Pascucci, V., Hawkes, E. & Chen, J.H. 2009 Topological feature extraction for comparison of length scales in terascale combustion simulation data. In Topoinvis'09: Topological Methods in Data Analysis and Visualization (eds. Pascucci, V., Tricoche, X., Hagen, H. & Tierny, J.). Springer.Google Scholar
Masri, A. R., Cao, R., Pope, S. B. & Goldin, G. M 2004 PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Model. 8, 122.CrossRefGoogle Scholar
Mastorakos, E., Baritaud, T. A. & Poinsot, T. J. 1997 a Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109, 198223.CrossRefGoogle Scholar
Mastorakos, E., Cruz, A. Pires Da & Poinsot, T. J. 1997 b A model for the effects of mixing on the autoignition of turbulent flows. Combust. Sci. Technol. 125, 243282.CrossRefGoogle Scholar
Miake-Lye, R. C. & Hammer, J. A. 1988 Alifted turbulent jet flames: a stability criterion based on the jet large-scale structure. Proc. Combust. Inst. 22, 817824.CrossRefGoogle Scholar
Mizobuchi, Y., Tachibana, S., Shinio, J., Ogawa, S. & Takeno, T. 2002 A numerical analysis of the structure of a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 29, 20092015.CrossRefGoogle Scholar
Mueller, C. J., Driscoll, J. F., Reuss, D. L., Drake, M. C. & Roslik, M. E. 1998 Vorticity generation and attenuation as vortices convect through a premixed flame. Combust. Flame 112, 342358.CrossRefGoogle Scholar
Muñiz, L. & Mungal, M. G. 1997 Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame 111, 1631.CrossRefGoogle Scholar
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 118, 441466.CrossRefGoogle Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.CrossRefGoogle Scholar
Peters, N. & Williams, F. A. 1983 Liftoff characteristics of turbulent jet diffusion flames. AIAA J. 21, 423429.CrossRefGoogle Scholar
Pickett, L. M. 2005 Low flame temperature limits for mixing-controlled Diesel combustion. Proc. Combust. Inst. 30, 27272735.CrossRefGoogle Scholar
Pickett, L. M., Siebers, D. L. & Idicheria, C. A. 2005 Relationship between ignition processes and the lift-off length of Diesel fuel jets. SAE Paper 2005-01-3843. Society of Automotive Engineers.Google Scholar
Pitts, W. M. 1998 Assessment of theories for the behaviour and blowout of lifted turbulent jet diffusion flame. Proc. Combust. Inst. 22, 809816.CrossRefGoogle Scholar
Poinsot, T. J., Echekki, T. & Mungal, M. G. 1992 A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81, 4573.CrossRefGoogle Scholar
Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct numerical simulations of compressible viscous flows. J. Comput. Phys. 101, 104139.CrossRefGoogle Scholar
Pope, S. B. 1988 The evolution of surfaces in turbulence. Intl J. Eng. Sci. 26, 445469.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Richardson, E. S., Yoo, C. S. & Chen, J. H. 2009 Analysis of second-order conditional moment closure applied to an autoignitive lifted hydrogen jet flame. Proc. Combust. Inst. 32, 16951703.CrossRefGoogle Scholar
Ruetsch, G. R., Vervisch, L. & Liñán, A. 1995 Effects of heat release on triple flames. Phys. Fluids 7, 14471454.CrossRefGoogle Scholar
Sankaran, R., Hawkes, E. R., Chen, J. H., Lu, T. & Law, C. K. 2007 Structure of a spatially developing turbulent lean methane–air bunsen flame. Proc. Combust. Inst. 31, 12911298.CrossRefGoogle Scholar
Schefer, R. W. & Goix, P. J. 1998 Mechanism of flame stabilization in turbulent lifted-jet flames. Combust. Flame 112, 559574.CrossRefGoogle Scholar
Stanley, S. A., Sarkar, S. & Mellado, J. P. 2002 A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation. J. Fluid Mech. 450, 377407.CrossRefGoogle Scholar
Su, L. K. & Clemens, N. T. 2003 The structure of fine-scale scalar mixing in gas-phase planar turbulent jets. J. Fluid Mech. 488, 129.CrossRefGoogle Scholar
Su, L. K., Sun, O. S. & Mungal, M. G. 2006 Experimental investigation of stabilization mechanisms in turbulent, lifted jet diffusion flames. Combust. Flame 144, 494512.CrossRefGoogle Scholar
Sutherland, J. C. & Kennedy, C. A. 2003 Improved boundary conditions for viscous, reacting, compressible flows. J. Comput. Phys. 191, 502524.Google Scholar
Tacke, M. M., Geyer, D., Hassel, E. P. & Janicka, J. 1998 A detailed investigation of the stabilization point of lifted turbulent diffusion flames. Proc. Combust. Inst. 27, 11571165.CrossRefGoogle Scholar
Thomas, F. O. & Goldschmidt, V. W. 1986 Structural characteristics of a developing turbulent planar jet. J. Fluid. Mech. 163, 227256.CrossRefGoogle Scholar
Upatnieks, A., Driscoll, J. F., Rasmussen, C. C. & Ceccio, S. L. 2004 Liftoff of turbulent jet flames–assessment of edge flame and other concepts using cinema-PIV. Combust. Flame 138, 259272.CrossRefGoogle Scholar
Vanquickenborne, L. & van Tiggelen, A. 1966 The stabilization mechanism of lifted diffusion flames. Combust. Flame 10, 5969.CrossRefGoogle Scholar
Yamashita, H., Shimada, M. & Takeno, T. 1996 A numerical study on flame stability at the transition point of jet diffusion flames. Proc. Combust. Inst. 26, 2734.CrossRefGoogle Scholar
Yeung, P. K. & Pope, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531586.CrossRefGoogle Scholar
Yoo, C. S. & Im, H. G. 2005 Transient dynamics of edge flames in a laminar nonpremixed hydrogen-air counterflow. Proc. Combust. Inst. 20, 349356.CrossRefGoogle Scholar
Yoo, C. S. & Im, H. G. 2007 Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. Combust. Theory Model. 11, 259286.CrossRefGoogle Scholar
Yoo, C. S., Wang, Y., Trouvé, A. & Im, H. G. 2005 Characteristic boundary conditions for direct numerical simulations of turbulent counterflow flames. Combust. Theory Model. 9, 617646.CrossRefGoogle Scholar
Zeldovich, Y. B. 1980 Regime classification of an exothermic reaction with non-uniform initial conditions. Combust. Flame 39, 211214.CrossRefGoogle Scholar

Yoo et al. supplementary movie

Movie 1. Logarithm of scalar dissipation rate. Red and yellow iso-surfaces represent χ values centered at 185 and 740 s-1, and white values greater than 2600 s-1. The maximum value in the movie is approximately 33,000 s-1.

Download Yoo et al. supplementary movie(Video)
Video 12.8 MB

Yoo et al. supplementary movie

Movie 2. Mass fractions of HO2 and OH. Red and yellow iso-surfaces represent YHO2 values centered at 3.4 × 10-6 and 1.8 × 10-4 respectively, and blue and purple YOH = 2.0 × 10-4 and 0.018 respectively. Maximum values of HO2 and OH mass fractions are 3.4 × 10-4 and 0.02, respectively.

Download Yoo et al. supplementary movie(Video)
Video 14.1 MB