Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T10:53:51.738Z Has data issue: false hasContentIssue false

A three-dimensional boundary-layer separation

Published online by Cambridge University Press:  19 April 2006

F. T. Smith
Affiliation:
Applied Mathematics Department, University of Western Ontario, London, Ontario, Canada Permanent address: Mathematics Department, Imperial College, London, S.W. 7, U.K.

Abstract

A nonlinear three-dimensional boundary-layer problem governing the flow upstream of a particular disturbance (e.g. a shallow obstacle) at the wall is considered. The upstream response, a free interaction, takes place under zero displacement of the boundary layer, and the solution is found numerically using Fourier series truncation and varying the number of terms kept in the series. In one part of the flow field regular separation is encountered, beyond which the motion becomes strongly attached to the wall elsewhere in the flow field. Analytically, local structural investigations then suggest that the attached part of the upstream response terminates at a line singularity, while the separated part can continue indefinitely far downstream. The former structure leads to a new set of similarity solutions of the three-dimensional boundary-layer equations, while the latter develops a vortex sheet formation. The three-dimensional flow problem has most relevance to pipe flows, but some connexion also with external flows, and the implications for these are discussed.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belcher, R. J., Burggraf, O. R. & Stewartson, K. 1972 J. Fluid Mech. 52, 753.
Dennis, S. C. R., & Chang, G. Z. 1970 J. Fluid Mech. 42, 471.
Goldstein, S. 1948 Quart. J. Mech. Appl. Math. 1, 43.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Hobson, E. W. 1931 Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press.
Jones, C. W. & Watson, E. J. 1963 Laminar Boundary Layers (ed. L. Rosenhead), cha. V. Oxford University Press.
Messiter, A. F. 1975 AGARD Conf. Proc. 168 on Flow Separation, May 1975, paper no. 4.
Messiter, A. F. 1979 Proc. 8th U.S. Nat. Cong. of Appl. Mech., June 1978, Los Angeles (in the press).
Reyhner, T. A. & Flügge-Lotz, I. 1968 Int. J. Nonlinear Mech. 3, 173.
Rizzetta, D. P., Burggraf, O. R. & Jenson, R. 1978 J. Fluid Mech. 89, 535.
Rott, N. & Lewellen, W. S. 1966 Prog. Aero. Sci. 7, 111.
Smith, F. T. 1973 J. Fluid Mech. 57, 803.
Smith, F. T. 1974 J. Inst. Math. Applic. 13, 127.
Smith, F. T. 1976a Quart. J. Mech. Appl. Math. 29, 343.
Smith, F. T. 1976b Mathematika 23, 62.
Smith, F. T. 1977a Proc. Roy. Soc. A 356, 443.
Smith, F. T. 1977b J. Fluid Mech. 79, 631.
Smith, F. T. 1978a R.A.E. Tech. Rep. TR78095.
Smith, F. T. 1978b J. Inst. Math. Applic. 21, 145.
Smith, F. T. 1979a J. Fluid Mech. 92, 171.
Smith, F. T. 1979b J. Fluid Mech. 90, 725.
Smith, F. T. & Stewartson, K. 1973a Proc. Roy. Soc. A 332, 1.
Smith, F. T. & Stewartson, K. 1973b J. Fluid Mech. 58, 143.
Smith, F. T. & Duck, P. W. 1977 Quart. J. Mech. Appl. Math. 30, 143.
Smith, F. T., Sykes, R. I. & Brighton, P. W. M. 1977 J. Fluid Mech. 83, 163.
Smith, J. H. B. 1975 AGARD Conf. Proc. 168 on flow separation, paper 31; also R.A.E. Tech. Memo. Aero. 1620.
Smith, J. H. B. 1977 R.A.E. Tech. Rep. TR77-58.
Stewartson, K. 1970 Proc. Roy. Soc. A 319, 289.
Stewartson, K. 1971 Quart. J. Mech. Appl. Math. 24, 387.
Stewartson, K. 1974 Adv. Appl. Mech. 14, 145.
Stewartson, K. & Williams, P. G. 1969 Proc. Roy. Soc. A 312, 181.
Stewartson, K. & Williams, P. G. 1973 Mathematika 20, 98.
Sychev, V. V. 1972 Izv. Akad. Nauk S.S.S.R. Mekh, Zhidk. Gaza 3, 47.
Sykes, R. I. 1979 Submitted to Proc. Roy. Soc. A.
Williams, P. G. 1975 Proc. 4th Int. Conf. Numerical Methods in Fluid Dynamics, Boulder 1974. Springer.